High light intensity aggravates latent manganese deficiency in maize.

J Exp Bot

Key Lab of Plant-Soil Interaction, MOE, College Resources and Environmental Sciences, China Agricultural University, Beijing, China.

Published: October 2020

Manganese (Mn) plays an important role in the oxygen-evolving complex, where energy from light absorption is used for water splitting. Although changes in light intensity and Mn status can interfere with the functionality of the photosynthetic apparatus, the interaction between these two factors and the underlying mechanisms remain largely unknown. Here, maize seedlings were grown hydroponically and exposed to two different light intensities under Mn-sufficient or -deficient conditions. No visual Mn deficiency symptoms appeared even though the foliar Mn concentration in the Mn-deficient treatments was reduced to 2 µg g-1. However, the maximum quantum yield efficiency of PSII and the net photosynthetic rate declined significantly, indicating latent Mn deficiency. The reduction in photosynthetic performance by Mn depletion was further aggravated when plants were exposed to high light intensity. Integrated transcriptomic and proteomic analyses showed that a considerable number of genes encoding proteins in the photosynthetic apparatus were only suppressed by a combination of Mn deficiency and high light, thus indicating interactions between changes in Mn nutritional status and light intensity. We conclude that high light intensity aggravates latent Mn deficiency in maize by interfering with the abundance of PSII proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraa366DOI Listing

Publication Analysis

Top Keywords

light intensity
20
high light
16
intensity aggravates
8
aggravates latent
8
deficiency maize
8
photosynthetic apparatus
8
latent deficiency
8
light
7
intensity
5
deficiency
5

Similar Publications

Effective integrated thermal management using hygroscopic hydrogel for photovoltaic-thermoelectric applications.

J Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

As the proportion of solar energy in the global energy mix increases, photovoltaic cells have emerged as one of the fastest-growing technologies in the renewable energy sector. However, photovoltaics utilize only a limited portion of the incident solar spectrum, resulting in significant amounts of light energy being wasted as heat. This excess heat raises the surface temperature of photovoltaic cells, which in turn reduces their overall efficiency.

View Article and Find Full Text PDF

Analysis of the dynamic evolution of green technology innovation decision-making in the supply chain.

J Environ Manage

December 2024

School of Business Administration, Chongqing Vocational College of Light Industry, Chongqing, 400065, China. Electronic address:

Green technology innovation (GTI) breaks the vicious cycle of "economic development-environmental pollution," mitigating the supply chain carbon emissions. Previous research focused on exploring supply chain GTI decision-making in the discrete strategy space and ignored the effect of stochastic factors. This paper, grounded in the classical evolutionary game theory, explores the interaction mechanism of supply chain GTI decision-making between suppliers and manufacturers under stochastic interferences and in the continuous strategy space.

View Article and Find Full Text PDF

An anisotropic plasmonic trimer is proposed as an effective spectroscopic amplifier for the maximum signal enhancement of the Hyper-Raman Scattering (HRS) process. The three-particle system is composed of asymmetric Au nanorings arranged collinearly in a J-aggregate configuration and illuminated by a longitudinally polarized light. The optical properties of the considered trimer have been numerically simulated by the Finite-Difference Time-Domain (FDTD) method.

View Article and Find Full Text PDF

Modular Light-Emitting Diode Shelving Systems for Scalable Optogenetics.

Methods Mol Biol

December 2024

Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.

Optogenetic experiments rely on the controlled delivery of light to diverse biological systems. Impressive devices have been recently developed to stimulate cells and small animals with multiple wavelengths and intensities. However, existing hardware solutions are often limited to a single sample holder, and their design and cost can further limit scalability.

View Article and Find Full Text PDF

Background: Post-inflammatory hyperpigmentation (PIHP) predominantly affects patients with melanin-rich skin, significantly impacting them psychosocially due to more frequent and severe pigmentary changes. In this study, the efficacy of a novel depigmenting agent 2-mercaptonicotinoyl glycine (Melasyl) in a dermocosmetic (DC) serum formulation is assessed as a stand-alone treatment of PIHP without sunscreen.

Materials And Methods: Thirty-two Mauritian subjects aged 18-50 years of phototype IV-VI presenting mild acne (GEA2) and moderate to severe PIHP (PAHPI > 10) participated in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!