Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na/H exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614123 | PMC |
http://dx.doi.org/10.1007/112_2020_25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!