AI Article Synopsis

  • Envenoming from viper snakes causes tissue damage and hemorrhage, with snake venom metalloproteinases (SVMPs) playing a key role in this process.
  • Hemorrhagic Factor 3 (HF3), a specific SVMP, causes severe local hemorrhage in animal models by interacting with various proteins and proteoglycans.
  • The study reveals that HF3 not only degrades proteoglycans but also cleaves important proteins like platelet-derived growth factor receptor (PDGFR), highlighting the complex mechanisms of tissue damage caused by SVMPs and their effects on microvascular integrity.

Article Abstract

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395112PMC
http://dx.doi.org/10.1038/s41598-020-69396-yDOI Listing

Publication Analysis

Top Keywords

hemorrhagic process
16
tissue damage
12
proteoglycans plasma
8
plasma proteins
8
growth factor
8
factor receptor
8
process induced
8
snake venom
8
venom metalloproteinases
8
damage including
8

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.

Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.

Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.

View Article and Find Full Text PDF

Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible.

View Article and Find Full Text PDF

A data management system for precision medicine.

PLOS Digit Health

January 2025

Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands.

Precision, or personalised medicine has advanced requirements for medical data management systems (MedDMSs). MedDMS for precision medicine should be able to process hundreds of parameters from multiple sites, be adaptable while remaining in sync at multiple locations, real-time syncing to analytics and be compliant with international privacy legislation. This paper describes the LogiqSuite software solution, aimed to support a precision medicine solution at the patient care (LogiqCare), research (LogiqScience) and data science (LogiqAnalytics) level.

View Article and Find Full Text PDF

Role of resistin in the porcine uterus: effects on endometrial steroidogenesis.

Reprod Fertil Dev

January 2025

Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Context The adipose tissue produces adipokines - hormones essential to many biological functions, including reproduction. Aims We hypothesised that resistin, one of the adipokines, is present in the blood plasma, uterine luminal flushings (ULF) and uterus of pigs during the oestrous cycle and early pregnancy, and that resistin influences uterine steroidogenesis. Methods This study aimed to determine the expression of resistin in the porcine endometrium and myometrium during the cycle and pregnancy by quantitative real-time polymerase chain reaction and western blot (WB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!