AI Article Synopsis

  • Protein conformational changes during ligand binding are influenced by complex intra- and intermolecular events, with two main kinetic mechanisms: conformational selection (CS) and induced fit (IF).
  • Experimental and computational methods were employed to analyze the coupled-folding/binding reaction of staphylococcal nuclease with adenosine-3',5'-diphosphate, revealing insights into specific protein-ligand interactions.
  • The study found that the shift from CS to IF occurs due to stabilization of a compact transition state mainly through weak Coulombic interactions, altering the reaction pathway on the free energy surface depending on ligand concentration.

Article Abstract

Protein conformational changes associated with ligand binding, especially those involving intrinsically disordered proteins, are mediated by tightly coupled intra- and intermolecular events. Such reactions are often discussed in terms of two limiting kinetic mechanisms, conformational selection (CS), where folding precedes binding, and induced fit (IF), where binding precedes folding. It has been shown that coupled folding/binding reactions can proceed along both CS and IF pathways with the flux ratio depending on conditions such as ligand concentration. However, the structural and energetic basis of such complex reactions remains poorly understood. Therefore, we used experimental, theoretical, and computational approaches to explore structural and energetic aspects of the coupled-folding/binding reaction of staphylococcal nuclease in the presence of the substrate analog adenosine-3',5'-diphosphate. Optically monitored equilibrium and kinetic data, combined with a statistical mechanical model, gave deeper insight into the relative importance of specific and Coulombic protein-ligand interactions in governing the reaction mechanism. We also investigated structural aspects of the reaction at the residue level using NMR and all-atom replica-permutation molecular dynamics simulations. Both approaches yielded clear evidence for accumulation of a transient protein-ligand encounter complex early in the reaction under IF-dominant conditions. Quantitative analysis of the equilibrium/kinetic folding revealed that the ligand-dependent CS-to-IF shift resulted from stabilization of the compact transition state primarily by weakly ligand-dependent Coulombic interactions with smaller contributions from specific binding energies. At a more macroscopic level, the CS-to-IF shift was represented as a displacement of the reaction "route" on the free energy surface, which was consistent with a flux analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7443883PMC
http://dx.doi.org/10.1073/pnas.1914349117DOI Listing

Publication Analysis

Top Keywords

staphylococcal nuclease
8
folding revealed
8
statistical mechanical
8
structural energetic
8
cs-to-if shift
8
reaction
5
energetics kinetics
4
kinetics substrate
4
substrate analog-coupled
4
analog-coupled staphylococcal
4

Similar Publications

Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of in Food.

J Agric Food Chem

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.

() is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk.

View Article and Find Full Text PDF

Hox genes play a pivotal role during development. Their expression is tightly controlled in a spatiotemporal manner, ensuring that specific body structures develop at the correct locations and times during development. Various genomics approaches have been used to capture temporal and dynamic regulation of Hox gene expression at the nucleosome/chromatin level.

View Article and Find Full Text PDF

Chromatin remodeling plays a pivotal role in the progression of esophageal squamous cell carcinoma (ESCC), but the precise mechanisms remain poorly understood. Here, we elucidated the critical function of staphylococcal nuclease and tudor domain-containing 1 (SND1) in modulating chromatin dynamics, thereby driving ESCC progression in both in vitro and in vivo models. Our data revealed that SND1 was markedly overexpressed in ESCC cell lines.

View Article and Find Full Text PDF

Background: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023.

Method: The diagnosis of these isolates was confirmed using the Vitek2 device.

View Article and Find Full Text PDF

The global regulator SpoVG is involved in biofilm formation and stress response in foodborne Staphylococcus aureus.

Int J Food Microbiol

January 2025

School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institude, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Staphylococcus aureus (S. aureus) is a primary culprit of food poisoning. As a highly adaptable pathogen, S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!