Mitochondria-eating protein (Mieap) plays a critical role in mitochondrial quality control (MQC) and functions as a p53-inducible tumor suppressor. This study aimed to examine its role in gastric cancer (GC) and esophageal cancer (EC). GC cells were infected with Mieap-overexpressing adenovirus (Ad-Mieap) and subjected to fluorescence-activated cell sorting (FACS), western blotting, and caspase assays. Thereafter, we evaluated the potential disruption of the p53/Mieap-regulated MQC pathway in vivo. Methylation-specific PCR (MSP) for Mieap, NIX, and BNIP3 promoters was performed and p53 mutations were detected using cryopreserved surgical specimens. Exogenous Mieap in GC cells induced the formation of vacuole-like structures (called MIVs, Mieap-induced vacuoles) and caspase-dependent cell death, with the activation of both caspase-3 and caspase-9. Of the 47 GC patients, promoter methylation in Mieap, BNIP3, and NIX was identified in two (4.3%), 29 (61.7%), and zero (0%) specimens, respectively. In total, 33 GC patients (70.2%) inactivated this MQC pathway. Amazingly, BNIP3 promoter in the normal epithelium was highly methylated in 18 of the 47 GC patients (38.3%). In EC patients, this MQC pathway was also inactivated in ten of 12 patients (83.3%). These results indicate that p53/Mieap-regulated MQC plays an important role in upper gastrointestinal (GI) tumor suppression, possibly, in part, through the mitochondrial apoptotic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.05.168 | DOI Listing |
Neurotherapeutics
January 2025
Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. Electronic address:
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.
View Article and Find Full Text PDFResveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity.
View Article and Find Full Text PDFAging Dis
December 2024
School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
Skeletal muscle dysfunction (SMD), one of the extrapulmonary complications in patients with chronic obstructive pulmonary disease (COPD), considerably influences patient prognosis. Mitochondria regulates their dynamic networks through a mitochondria quality control (MQC) mechanism, involving mitochondrial biogenesis, mitochondrial dynamics, and mitophagy. The MQC is crucial for mitochondrial homeostasis and health, and disruption of it can lead to mitochondrial damage, which is a key factor in the structural and functional impairment of skeletal muscle in COPD.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
Existing evidence indicates that exercise training can enhance neural function by regulating mitochondrial quality control (MQC), which can be impaired by cerebral ischemia, and that sirtuin-3 (SIRT3), a protein localized in mitochondria, is crucial in maintaining mitochondrial functions. However, the relationship among exercise training, SIRT3, and MQC after cerebral ischemia remains obscure. This study attempted to elucidate the relationship among exercise training, SIRT3 and MQC after cerebral ischemia in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!