Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: In this study, the authors aimed to determine 1) whether the use of intraoperative electrocorticography (ECoG) affects outcomes and complication rates of children undergoing resective epilepsy surgery; 2) which patient- and epilepsy-related variables might influence ECoG-based surgical strategy; and 3) what the predictors of epilepsy surgery outcomes are.
Methods: Over a period of 12 years, data were collected on pediatric patients who underwent tailored brain resections in the Motol Epilepsy Center. In patients in whom an abnormal ECoG pattern (e.g., spiking, suppression burst, or recruiting rhythm) was not observed beyond presurgically planned resection margins, the authors did not modify the surgical plan (group A). In those with significant abnormal ECoG findings beyond resection margins, the authors either did (group B) or did not (group C) modify the surgical plan, depending on the proximity of the eloquent cortex or potential extent of resection. Using Fisher's exact test and the chi-square test, the 3 groups were compared in relation to epilepsy surgery outcomes and complication rate. Next, multivariate models were constructed to identify variables associated with each of the groups and with epilepsy surgery outcomes.
Results: Patients in group C achieved significantly lower rates of seizure freedom compared to groups A (OR 30.3, p < 0.001) and B (OR 35.2, p < 0.001); groups A and B did not significantly differ (p = 0.78). Patients in whom the surgical plan was modified suffered from more frequent complications (B vs A+C, OR 3.8, p = 0.01), but these were mostly minor (duration < 3 months; B vs A+C, p = 0.008). In all cases, tissue samples from extended resections were positive for the presence of the original pathology. Patients with intended modification of the surgical plan (groups B+C) suffered more often from daily seizures, had a higher age at first seizure, had intellectual disability, and were regarded as MR-negative (p < 0.001). Unfavorable surgical outcome (Engel class II-IV) was associated with focal cortical dysplasia, incomplete resection based on MRI and/or ECoG findings, negative MRI finding, and inability to modify the surgical plan when indicated.
Conclusions: Intraoperative ECoG serves as a reliable tool to guide resection and may inform the prognosis for seizure freedom in pediatric patients undergoing epilepsy surgery. ECoG-based modification of the surgical plan is associated with a higher rate of minor complications. Children in whom ECoG-based modification of the surgical plan is indicated but not feasible achieve significantly worse surgical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2020.4.PEDS20198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!