Analyzing human sleep EEG: A methodological primer with code implementation.

Sleep Med Rev

Department of Epileptology, University of Bonn, 53127 Bonn, Germany.

Published: December 2020

Recent years have witnessed a surge in human sleep electroencephalography (EEG) studies, employing increasingly sophisticated analysis strategies to relate electrophysiological activity to cognition and disease. However, properly calculating and interpreting metrics used in contemporary sleep EEG requires attention to numerous theoretical and practical signal-processing details that are not always obvious. Moreover, the vast number of outcome measures that can be derived from a single dataset inflates the risk of false positives and threatens replicability. We review several methodological issues related to 1) spectral analysis, 2) montage choice, 3) extraction of phase and amplitude information, 4) surrogate construction, and 5) minimizing false positives, illustrating both the impact of methodological choices on downstream results, and the importance of checking processing steps through visualization and simplified examples. By presenting these issues in non-mathematical form, with sleep-specific examples, and with code implementation, this paper aims to instill a deeper appreciation of methodological considerations in novice and non-technical audiences, and thereby help improve the quality of future sleep EEG studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.smrv.2020.101353DOI Listing

Publication Analysis

Top Keywords

sleep eeg
12
human sleep
8
code implementation
8
eeg studies
8
false positives
8
analyzing human
4
sleep
4
eeg
4
methodological
4
eeg methodological
4

Similar Publications

Sleep entails significant changes in cerebral hemodynamics and metabolism. Yet, the way these processes evolve throughout wakefulness and sleep and their spatiotemporal dependence remain largely unknown. Here, by integrating a novel functional PET technique with simultaneous EEG-fMRI, we reveal a tightly coupled temporal progression of global hemodynamics and metabolism during the descent into NREM sleep, with large hemodynamic fluctuations emerging as global glucose metabolism declines, both of which track EEG arousal dynamics.

View Article and Find Full Text PDF

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Impact of sleep deprivation on dynamic functional connectivity states.

Handb Clin Neurol

January 2025

Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Sleep deprivation (SD) is an experimental procedure to study the effects of sleep loss on the human brain. Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), have been pivotal in studying these effects. The present chapter aims to retrace the state of the art regarding the literature that examines the SD effects on the brain through functional connectivity (FC) evaluated in fMRI and EEG settings, separately.

View Article and Find Full Text PDF

Sleep health of adults and children with Moebius syndrome.

Res Dev Disabil

January 2025

School of Psychological Science, Oregon State University, 2950 SW Jefferson Way, Corvallis, OR 97331, USA. Electronic address:

Introduction: Moebius syndrome is a rare congenital disorder with frequent anecdotal reports of sleep disturbances not sufficiently categorized by prior literature. The present mixed-methods, two-phase study aimed to characterize the sleep health and symptoms of a cohort of adults and children (via parent proxies) with Moebius syndrome.

Methods: In Phase 1, participants were 46 adults with Moebius Syndrome (M=33.

View Article and Find Full Text PDF

Brain changes in sleep-related hypermotor epilepsy observed from wakefulness and N2 sleep: A matched case-control study.

Clin Neurophysiol

January 2025

Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:

Objective: Sleep-related hypermotor epilepsy (SHE) is a relatively uncommon epilepsy syndrome, characterized by seizures closely related to the sleep cycle. This study aims to explore interictal electroencephalographic (EEG) characteristics in SHE.

Methods: We compared EEG data from 20 patients with SHE, 20 patients with focal epilepsy (FE), and 14 healthy controls, carefully matched for age, sex, education level, epilepsy duration, and drug-resistant epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!