Light-triggered redox activity of small (d = 2 nm) GdYVO:Eu nanoparticles (NPs) in aqueous solutions and lipid suspensions is reported. It has been revealed that depending on pre-treatment conditions (exposure to UV light or storage in the dark) the same NPs exhibit pro- or anti-oxidant properties. Pro-/anti-oxidant activity in aqueous solutions was evaluated by UV-vis spectroscopy using probe molecules for hydroxyl radicals (·OH) and superoxide anions (O). Lipid oxidation under the effect of NPs has been also analyzed. Multi-functional GdYVO:Eu NPs are assumed to be a new theranostic agent in cancer therapy, which exhibit fluorescent properties, triggered redox activity and drug-carrier ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.118741DOI Listing

Publication Analysis

Top Keywords

redox activity
12
light-triggered redox
8
gdyvoeu nanoparticles
8
aqueous solutions
8
activity
4
activity gdyvoeu
4
nanoparticles light-triggered
4
activity small
4
small d = 2 nm
4
d = 2 nm gdyvoeu
4

Similar Publications

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups.

Toxics

December 2024

Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.

Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP.

View Article and Find Full Text PDF

Anti-Inflammatory Activity of Gomphrenin-Rich Fraction from L. f. Fruits.

Nutrients

December 2024

Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.

L. (Malabar spinach, Basellaceae), widely consumed as a leafy vegetable, produces dark-colored fruits rich in betacyanins, including rare 6-glycosylated derivatives called gomphrenins. Comprehensive studies on the anti-inflammatory potential of its gomphrenin fraction (A) and crude extract (B) employed various analytical and biological methods.

View Article and Find Full Text PDF

Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.

View Article and Find Full Text PDF

(1) Background: The unique geographical and climatic conditions of the Antarctic Peninsula contribute to distinct regional ecosystems. Microorganisms are crucial for sustaining the local ecological equilibrium. However, the variability in soil microbial community diversity across different regions of the Antarctic Peninsula remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!