The aim of this work is to examine the adsorption performance and mechanism of phosphorus (P) onto polyethyene polyamine (PEPA) grafted chitosan-zirconium(IV) composite beads (CS-Zr-PEPA) from aqueous solutions. The morphology, functional groups, and surface area of the CS-Zr-PEPA beads were characterized by SEM, FTIR, and BET analysis. Batch adsorption experiments were conducted via different operating parameters such as solution pH, initial phosphate concentration, co-existing anions and temperature. The adsorption kinetics, equilibrium isotherms and adsorption stability of the adsorbent were scrutinized. In comparison with other CS-based beads, the CS-Zr-PEPA had a greater affinity towards P and exhibited a maximum adsorption capacity of 103.96 mg-P/g predicted by Langmuir mode. The reusability studies of CS-Zr-PEPA beads were carried out. The CS-Zr-PEPA beads exhibit preferable sequestration of P through specific interactions, as further demonstrated by studying physicochemical characteristics of the virgin beads and P-adsorbed beads using X-ray photoelectron spectroscopy (XPS). The column performance of CS-Zr-PEPA beads was tested with P-containing wastewater. Results indicated that the developed CS-Zr-PEPA composite beads could be utilized as a promising adsorbent for effective removal and recovery of P from water and wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.07.218 | DOI Listing |
Int J Biol Macromol
December 2020
School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
The aim of this work is to examine the adsorption performance and mechanism of phosphorus (P) onto polyethyene polyamine (PEPA) grafted chitosan-zirconium(IV) composite beads (CS-Zr-PEPA) from aqueous solutions. The morphology, functional groups, and surface area of the CS-Zr-PEPA beads were characterized by SEM, FTIR, and BET analysis. Batch adsorption experiments were conducted via different operating parameters such as solution pH, initial phosphate concentration, co-existing anions and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!