We wanted to investigate whether Isoniazid (INH) can directly stimulate activation of hepatic stellate cells (HSCs) and enhance production of collagen. Treatment of human hepatic stellate cell line LX2 with or without 5μM INH for 24 to 72 hours was performed to look into content of cytochrome P450 2E1 (CYP2E1), activity of NADPH oxidase (NOX) and intracellular oxidative stress. Protein level as well as mRNA expression of alpha smooth muscle actin (α-SMA) and collagen1A1 (COL1A1) were assessed by western blot and real time PCR. In some experiments pyrazole (PY) was pre-treated to LX2 cells to induce CYP2E1 prior to INH treatment. CYP2E1 level as well as NOX activity was gradually increased with INH treatment in LX2 cells till 72 hours. Following 72 hours of INH exposure, intracellular glutathione (GSH) level was found to be reduced compared to control (p<0.01) and showed expression of α-SMA, indicating activation of HSC. We could not found any change in collagen expression in this experimental study. Pyrazole (PY) pre-treatment to LX2 cells caused significant increase in cellular CYP2E1 content associated with increase of NOX, intracellular reactive oxygen species (ROS), and expression of α-SMA and collagen1 after INH exposure. CYP2E1 is present in insignificant amount in HSCs and INH treatment could not induce collagen expression, although altered cellular oxidant levels was observed. But in LX2 cells when CYP2E1 was over-expressed by PY, INH administration provokes oxidative stress mediated stellate cells activation along with collagen type I expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394448PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236992PLOS

Publication Analysis

Top Keywords

cytochrome p450
8
p450 2e1
8
hepatic stellate
8
level well
8
lx2 cells
8
inh treatment
8
inh
5
expression type
4
type collagen
4
collagen response
4

Similar Publications

Background: Proton pump inhibitor (PPI) drugs are widely used and are among the most significant achievements of modern pharmacology. Their primary purpose is treating and preventing gastric acid-related disorders. Migraine and PPI intake are prevalent, and many people are affected by both.

View Article and Find Full Text PDF

Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples.

Drug Metab Dispos

January 2025

Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida. Electronic address:

Many factors cause interperson variability in the activity and expression of the cytochrome P450 (CYP) drug-metabolizing enzymes in the liver, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors are associated with CYP expression, with estrogen receptor α (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the 2 top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown.

View Article and Find Full Text PDF

Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone.

Drug Metab Dispos

January 2025

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.

Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.

View Article and Find Full Text PDF

Uncovering the impact of COVID-19-mediated bidirectional dysregulation of cytochrome P450 3A4 on systemic and pulmonary drug concentrations using physiologically based pharmacokinetic modeling.

Drug Metab Dispos

January 2025

Current affiliation: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Current affiliation: OneDrug Inc., Toronto, Ontario, Canada; Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom. Electronic address:

Several clinical studies have shown that COVID-19 increases the systemic concentration of drugs in hospitalized patients with COVID-19. However, it is unclear how COVID-19-mediated bidirectional dysregulation of hepatic and pulmonary cytochrome P450 (CYP) 3A4 affects drug concentrations, especially in the lung tissue, which is most affected by the disease. Herein, physiologically based pharmacokinetic modeling was used to demonstrate the differences in systemic and pulmonary concentrations of 4 respiratory infectious disease drugs when CYP3A4 is concurrently downregulated in the liver and upregulated in the lung based on existing clinical data on COVID-19-CYP3A4 interactions at varying severity levels including outpatients, non-intensive care unit (ICU), and ICU patients.

View Article and Find Full Text PDF

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!