Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Terahertz phase retrieval is a promising technique able to assess the complex diffracted wave properties through an iterative processing algorithm. In this Letter, we demonstrate the implementation of this technique in reflection geometry with a continuous wave acquisition system working at 0.287 THz. To ensure a high signal-to-noise ratio in the measured dataset, we proposed a double parallel recording scheme with one detector and two lock-in amplifiers operating with the complimentary sensitivity setting. This provided a higher numerical aperture than conventional raster-scanning focal plane imaging. A specialized digital interferometric postprocessing procedure was applied to obtain a surface height map from the reconstructed phase distribution in the object's irradiated area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.397935 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!