Transparent layers are critical for enhancing optical contrast of graphene on a substrate. However, once the substrate is fully covered by large-area graphene, there are no accurate transparent layer and reference for optical contrast calculations. The thickness uncertainty of the transparent layer reduces the analytical accuracy of graphene. Thus, in this Letter, we propose a reference-aided differential reflection (DR) method with a dual-light path. The accurate thickness of the transparent layer is obtained by improving the DR spectrum sensitivity using a designable reference. Hence, the analytical accuracy of graphene thickness is guaranteed. To demonstrate this concept, a centimeter-scale chemical-vapor-deposition-synthesized graphene was measured on a / substrate. The thickness of underlying was first identified with the 1 nm resolution by the DR spectrum. Then, the thickness distribution of graphene was directly deduced from a DR map with submonolayer resolution at a preferred wavelength. The results were also confirmed by ellipsometry and atomic force microscopy. As a result, this new method provides an extra degree of freedom for the DR method to accurately measure the thickness of large-area two-dimensional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.398196DOI Listing

Publication Analysis

Top Keywords

transparent layer
12
thickness large-area
8
large-area graphene
8
differential reflection
8
optical contrast
8
analytical accuracy
8
accuracy graphene
8
thickness
7
graphene
7
imaging layer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!