The paradigmatic electrocyclic ring opening of monosubstituted cyclobutenes has been used to diagnose possible solvation effects tuning the torquoselectivity observed in these reactions. This kind of selectivity in electrocyclic reactions is mostly due to strong orbital interactions, particularly when they involve powerful electron donors and acceptors, which also combine with usually milder steric effects. Orbital interactions are established between the cleaving C-C bond and the HOMO/LUMO of the EDG/EWG substituent. This implies that the larger torquoselectivity-featuring substrates may also suffer stronger solvation effects due to the higher polarity imposed by the substituent. This premise is tested and the source of solvation effects as a consequence of substitution analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob01229g | DOI Listing |
J Am Chem Soc
January 2025
School of Energy and Environment, Southeast University, Nanjing 210096, China.
The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.
View Article and Find Full Text PDFJ Mol Model
January 2025
Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.
Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!