The development and application of photocatalysts with strong redox ability to degrade refractory pesticides is the key to eliminating pesticide contamination. In this work, we develop a facile, time-saving, and surfactant-assisted method to fabricate a new Z-scheme heterojunction based on TiO2/BiOCl. This photocatalyst is rich in oxygen vacancy defects (TiO2-OV-BiOCl), and displays an excellent photocatalytic degradation performance for imidacloprid (IMD), and a possible degradation pathway of IMD is provided. The surfactant F127 plays an essential role in regulating the oxygen vacancy defects (OVDs) of TiO2-OV-BiOCl, where the OVD mainly exists in 5 layer BiOCl ultrathin nanosheets. Free radical trapping experiments demonstrate that the introduction of an OVD in BiOCl as a 'charge mediator' changes the charge-transfer mode from a type-II mechanism to a Z-scheme mechanism. The formation of a Z-scheme heterojunction leads to an excellent light utilization and higher separation efficiency of photogenerated charge carriers with a prolonged lifetime compared to those of BiOCl and TiO2/BiOCl. This work highlights the critical role of an OVD in the construction of a Z-scheme heterojunction of TiO2/BiOCl, and it can be applied to construct efficient photocatalytic systems for pesticide degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt02128h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!