Effect of 3% CO2 inhalation on respiratory exchange ratio and cardiac output during constant work-rate exercise.

J Sports Med Phys Fitness

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.

Published: February 2021

Background: The aim of this study was to examine whether the decrease in respiratory exchange ratio (RER) during constant work-rate exercise (CWE) with 3% carbon dioxide (CO2) inhalation could be caused by the combination of the decrease in CO2 output (V̇CO2) and the increase in oxygen uptake (V̇O2). In addition, we investigated the effect of 3% CO2 inhalation on cardiac output (Q̇) during CWE.

Methods: Seven males (V̇O2max: 44.1±6.4 mL/min/kg) carried out transitions from low-load cycling (baseline; 40w) to light intensity exercise (45% V̇O2 max; 89.3±12.5 W) and heavy intensity exercise (80% V̇O2max; 186.5±20.2 W) while inhaling normal air (Air) or an enriched CO2 gas (3% CO2, 21% O2, balance N2). Each exercise session was 6 min, and respiratory responses by Douglas bag technique and cardiac responses by thoracic bio-impedance method were measured during the experiment.

Results: Ventilation for 3% CO2 was higher than for air through the experiment (P<0.05). Steady and non-steady state RER and V̇CO2 for 3% CO2 were less than for air in both light and heavy intensities (P<0.05), but V̇O2 and Q̇ did not differ between the two conditions.

Conclusions: 3% CO2 inhalation induced the decrease in RER during CWE at light and heavy intensities, which was due to the decrease in V̇CO2. The promoted ventilation with 3% CO2 did not lead to the increase in V̇O2. Moreover, 3% CO2 inhalation did not affect Q̇ during CWE at light and heavy intensities.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S0022-4707.20.11012-0DOI Listing

Publication Analysis

Top Keywords

co2 inhalation
12
respiratory exchange
8
exchange ratio
8
cardiac output
8
constant work-rate
8
work-rate exercise
8
intensity exercise
8
co2
7
exercise
5
inhalation respiratory
4

Similar Publications

Programmable scanning diffuse speckle contrast imaging of cerebral blood flow.

Neurophotonics

January 2025

University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.

Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.

Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.

View Article and Find Full Text PDF

Square and 4-7-8 breathing are popularly promoted by psychotherapists but have little empirical support. We hypothesized that breathing at 6 breaths per minute (bpm) would improve HRV, reduce blood pressure, and improve mood more than either square or 4-7-8 breathing. We also hypothesized square and 4-7-8 breathing would increase end-tidal CO (PETCO).

View Article and Find Full Text PDF

A Computational Fluid Dynamics Analysis of BiPAP Pressure Settings on Airway Biomechanics Using a CT-Based Respiratory Tract Model.

Respir Physiol Neurobiol

January 2025

School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia. Electronic address:

Central and Obstructive Sleep Apnea (CSA and OSA), Chronic Obstructive Pulmonary Disease (COPD), and Obesity Hypoventilation Syndrome (OHS) disrupt breathing patterns, posing significant health risks and reducing the quality of life. Bilevel Positive Airway Pressure (BiPAP) therapy offers adjustable inhalation and exhalation pressures, potentially enhancing treatment adaptability for the above diseases. This is the first-ever study that employs Computational Fluid Dynamics (CFD) to examine the biomechanical impacts of BiPAP under four settings: Inspiratory Positive Airway Pressure (IPAP)/Expiratory Positive Airway Pressure (EPAP) of 12/8, 16/6, and 18/8 cmHO, compared to a without-BiPAP scenario of zero-gauge pressure.

View Article and Find Full Text PDF

Background: The healthcare sector contributes significantly to global greenhouse emissions, with inhalers being major contributors.

Objective: To develop a framework for reducing the environmental footprint of inhalers in Spain by implementing greener prescription practices.

Methods: A multidisciplinary working group was formed, including hospital pharmacists, pulmonologists, and environmental experts.

View Article and Find Full Text PDF

Contributions of Medical Greenhouse Gases to Climate Change and Their Possible Alternatives.

Int J Environ Res Public Health

November 2024

Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!