Lung cancer is the most common and lethal malignant disease for which the development of efficacious chemotherapeutic agents remains an urgent need. Pristimerin (PRIS), a natural bioactive component isolated from various plant species in the Celastraceae and Hippocrateaceae families, has been reported to exhibit outstanding antitumor effects in several types of cells. However, the underlying mechanisms involved remain poorly understood. Here, we reported the novel finding that PRIS significantly suppressed lung cancer growth in conditionally reprogrammed patient-derived lung adenocarcinoma cells (CRLCs). We demonstrated that PRIS inhibited the cell viabilities, migrative and invaded abilities, and capillary structure formation of CRLCs. Furthermore, our results clarified that PRIS induced mitochondrial dysfunction through reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and caspase-4, and expression of endoplasmic reticulum (ER) stress-associated proteins. Inhibition of ER stress by 4-PBA (4-phenylbutyric acid, a specific ER stress inhibitor) or CHOP siRNA transfection ameliorated PRIS-induced loss of mitochondrial membrane potential and intrinsic apoptosis. The present study also provides mechanistic evidence that PRIS suppressed the EphB4/CDC42/N-WASP signaling pathway, which is required for mitochondrial-mediated intrinsic apoptosis, activation of ER stress, and stimulation of caspase-4 induced by PRIS, and consequently resulting in suppressed cell viability, migration, and angiogenesis in CRLCs. Taken together, by providing a mechanistic insight into the modulation of ER stress-induced cell death in CRLCs by PRIS, we suggest that PRIS has a strong potential of being a new antitumor therapeutic agent with applications in the fields of human lung adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369684PMC
http://dx.doi.org/10.1155/2020/7409853DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
12
conditionally reprogrammed
8
reprogrammed patient-derived
8
patient-derived lung
8
adenocarcinoma cells
8
endoplasmic reticulum
8
ephb4/cdc42/n-wasp signaling
8
lung cancer
8
pris
8
pris suppressed
8

Similar Publications

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology.

BMC Cancer

January 2025

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.

Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.

View Article and Find Full Text PDF

Molecular subtypes, such as defined by The Cancer Genome Atlas (TCGA), delineate a cancer's underlying biology, bringing hope to inform a patient's prognosis and treatment plan. However, most approaches used in the discovery of subtypes are not suitable for assigning subtype labels to new cancer specimens from other studies or clinical trials. Here, we address this barrier by applying five different machine learning approaches to multi-omic data from 8,791 TCGA tumor samples comprising 106 subtypes from 26 different cancer cohorts to build models based upon small numbers of features that can classify new samples into previously defined TCGA molecular subtypes-a step toward molecular subtype application in the clinic.

View Article and Find Full Text PDF

Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.

View Article and Find Full Text PDF

New thiazole derivative as a potential anticancer and topoisomerase II inhibitor.

Sci Rep

January 2025

Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.

To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!