A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased Dendritic Branching of and Reduced δ-GABA Receptor Expression on Parvalbumin-Positive Interneurons Increase Inhibitory Currents and Reduce Synaptic Plasticity at Puberty in Female Mouse CA1 Hippocampus. | LitMetric

Parvalbumin positive (PV+) interneurons play a pivotal role in cognition and are known to be regulated developmentally and by ovarian hormones. The onset of puberty represents the end of a period of optimal learning when impairments in synaptic plasticity are observed in the CA1 hippocampus of female mice. Therefore, we tested whether the synaptic inhibitory current generated by PV+ interneurons is increased at puberty and contributes to these deficits in synaptic plasticity. To this end, the spontaneous inhibitory postsynaptic current (sIPSC) was recorded using whole-cell patch-clamp techniques from CA1 pyramidal cells in the hippocampal slice before (PND 28-32) and after the onset of puberty in female mice (~PND 35-44, assessed by vaginal opening). sIPSC frequency and amplitude were significantly increased at puberty, but these measures were reduced by 1 μM DAMGO [1 μM, (D-Ala, N-MePhe, Gly-ol)-enkephalin], which silences PV+ activity μ-opioid receptor targets. At puberty, dendritic branching of PV+ interneurons in GAD67-GFP mice was increased, while expression of the δ subunit of the GABA receptor (GABAR) on these interneurons decreased. Both frequency and amplitude of sIPSCs were significantly increased in pre-pubertal mice with reduced δ expression, suggesting a possible mechanism. Theta burst induction of long-term potentiation (LTP), an model of learning, is impaired at puberty but was restored to optimal levels by DAMGO administration, implicating inhibition PV+ interneurons as one cause. Administration of the neurosteroid/stress steroid THP (30 nM, 3α-OH, 5α-pregnan-20-one) had no effect on sIPSCs. These findings suggest that phasic inhibition generated by PV+ interneurons is increased at puberty when it contributes to impairments in synaptic plasticity. These results may have relevance for the changes in cognitive function reported during early adolescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363981PMC
http://dx.doi.org/10.3389/fncel.2020.00203DOI Listing

Publication Analysis

Top Keywords

pv+ interneurons
20
synaptic plasticity
16
increased puberty
12
dendritic branching
8
puberty
8
puberty female
8
ca1 hippocampus
8
onset puberty
8
impairments synaptic
8
female mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!