Consumer electronic products have a complex life cycle, characterized by environmental, social, and economic impacts and benefits associated with their manufacturing, use, and disposal at end-of-life. Accurately analysing these trade-offs and creating sustainable solutions requires data about the materials and components that make up these devices. Such information is rarely disclosed by manufacturers and only exists in the open literature in disparate case study format. This study presents a comprehensive database of bill of material (BOM) data describing the mass of major materials and components contained in 95 unique consumer electronic products. Data are generated by product disassembly and physical characterization and then validated against external benchmarks in the literature. The study also contributes a reproducible framework for organizing BOM data so that they can be expanded as new products enter the market. These data will benefit researchers studying all aspects of electronics and sustainability, including material scarcity, product design, environmental life cycle assessment, electronic waste policy, and environmental health and safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393088PMC
http://dx.doi.org/10.1038/s41597-020-0573-9DOI Listing

Publication Analysis

Top Keywords

consumer electronic
12
electronic products
12
life cycle
8
materials components
8
bom data
8
data
6
disassembly-based bill
4
bill materials
4
materials data
4
data consumer
4

Similar Publications

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Pilot study on the development of digitally supported health promotion for seafarers on sea.

Int Marit Health

January 2025

Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Seewartenstraße 10, 20459 Hamburg, Hamburg, Germany.

Background: Seafarers are exposed to a variety of job-specific physical and psychosocial stressors. Health promotion on board is of great importance for the salutogenesis of this occupational group. Due to the difficult accessibility of seafarers, electronically supported health management can be highly valuable.

View Article and Find Full Text PDF

Purpose: Wearable electronic low vision enhancement systems (wEVES) improve visual function but are not widely adopted by people with vision impairment. Here, qualitative research methods were used to investigate the usefulness of wEVES for people with age-related macular degeneration (AMD) after an extended home trial.

Methods: Following a 12-week non-masked randomised crossover trial, semi-structured interviews were completed with 34 participants with AMD, 64.

View Article and Find Full Text PDF

Elemental partitioning, morpho-physiological effects, genotoxicity, and health risk assessment associated with tomato (Solanum lycopersicum L.) grown in soil contaminated with mining tailings.

Environ Res

January 2025

Doctorado en Ciencias Ambientales, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero. Privada de Laurel 13, Col. El Roble, 39640, Acapulco, Guerrero, México; Facultad de Ciencias Agropecuarias y Ambientales, Unidad Tuxpan, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan, km 2.5, Iguala de la Independencia, Guerrero, México; Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, 62210, Cuernavaca, Morelos, México; Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, México; Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, 47600, Jalisco, México; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero. Ex-hacienda de San Juan Bautista, Taxco el Viejo, 40323, Taxco el Viejo, Guerrero, México. Electronic address:

This study explored the distribution of macronutrients (Ca, Mg, Na, K) and lithogenic (Ba, Cr, Ni, Mn, Fe) and mining-related (As, Pb, Cd, Cu, Zn) toxic metalloids and metals (TMMs) in tomato (Solanum lycopersicum L.), and its effects on plant development, productivity, genotoxicity, and human health, using a soil affected by mine tailings (AS) and an unaffected control soil (CS). The chemistry of soils reflected their mineralogy, and Fe-Ti oxides, sulfides and sulfosalts were found to be the most significant reservoirs of TMMs.

View Article and Find Full Text PDF

Development and applications of a machine learning model for an in-depth analysis of pentylenetetrazol-induced seizure-like behaviors in adult zebrafish.

Neuroscience

January 2025

Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States. Electronic address:

Epilepsy, a neurological disorder causing recurring seizures, is often studied in zebrafish by exposing animals to pentylenetetrazol (PTZ), which induces clonic- and tonic-like behaviors. While adult zebrafish seizure-like behaviors are well characterized, manual assessment remains challenging due to its time-consuming nature, potential for human error/bias, and the risk of overlooking subtle behaviors. Aiming to circumvent these issues, we developed a machine learning model for automating the analysis of subtle abnormal and seizure-like behaviors in PTZ-exposed adult zebrafish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!