Background: Distraction osteogenesis has been broadly used to treat various structural bone deformities and defects. However, prolonged healing time remains a major problem. Various approaches including the use of low-intensity pulsed ultrasound, parathyroid hormone, and bone morphogenetic proteins (BMPs) have been studied to shorten the treatment period with limited success. Our previous studies of rats have reported that the transcutaneous application of CO2 accelerates fracture repair and bone-defect healing in rats by promoting angiogenesis, blood flow, and endochondral ossification. This therapy may also accelerate bone generation during distraction osteogenesis, but, to our knowledge, no study investigating CO2 therapy on distraction osteogenesis has been reported.
Questions/purposes: We aimed to investigate the effect of transcutaneous CO2 during distraction osteogenesis in rabbits, which are the most suitable animal as a distraction osteogenesis model for a lengthener in terms of limb size. We asked: Does transcutaneous CO2 during distraction osteogenesis alter (1) radiographic bone density in the distraction gap during healing; (2) callus parameters, including callus bone mineral content, volumetric bone mineral density, and bone volume fraction; (3) the newly formed bone area, cartilage area, and angiogenesis, as well as the expression of interleukin-6 (IL-6), BMP-2, BMP-7, hypoxia-inducible factor (HIF) -1α, and vascular endothelial growth factor (VEGF); and (4) three-point bend biomechanical strength, stiffness, and energy?
Methods: Forty 24-week-old female New Zealand white rabbits were used according to a research protocol approved by our institutional ethical committee. A distraction osteogenesis rabbit tibia model was created as previously described. Briefly, an external lengthener was applied to the right tibia, and a transverse osteotomy was performed at the mid-shaft. The osteotomy stumps were connected by adjusting the fixator to make no gap. After a 7-day latency phase, distraction was continued at 1 mm per day for 10 days. Beginning the day after the osteotomy, a 20-minute transcutaneous application of CO2 on the operated leg using a CO2 absorption-enhancing hydrogel was performed five times per week in the CO2 group (n = 20). Sham treatment with air was administered in the control group (n = 20). Animals were euthanized immediately after the distraction period (n = 10), 2 weeks (n = 10), and 4 weeks (n = 20) after completion of distraction. We performed bone density quantification on the plain radiographs to evaluate consolidation in the distraction gap with image analyzing software. Callus parameters were measured with micro-CT to assess callus microstructure. The newly formed bone area and cartilage area were measured histologically with safranin O/fast green staining to assess the progress of ossification. We also performed immunohistochemical staining of endothelial cells with fluorescein-labeled isolectin B4 and examined capillary density to evaluate angiogenesis. Gene expressions in newly generated callus were analyzed by real-time polymerase chain reaction. Biomechanical strength, stiffness, and energy were determined from a three-point bend test to assess the mechanical strength of the callus.
Results: Radiographs showed higher pixel values in the distracted area in the CO2 group than the control group at Week 4 of the consolidation phase (0.98 ± 0.11 [95% confidence interval 0.89 to 1.06] versus 1.19 ± 0.23 [95% CI 1.05 to 1.34]; p = 0.013). Micro-CT demonstrated that bone volume fraction in the CO2 group was higher than that in the control group at Week 4 (5.56 ± 3.21 % [95% CI 4.32 to 6.12 %] versus 11.90 ± 3.33 % [95% CI 9.63 to 14.25 %]; p = 0.035). There were no differences in any other parameters (that is, callus bone mineral content at Weeks 2 and 4; volumetric bone mineral density at Weeks 2 and 4; bone volume fraction at Week 2). At Week 2, rabbits in the CO2 group had a larger cartilage area compared with those in the control group (2.09 ± 1.34 mm [95% CI 1.26 to 2.92 mm] versus 5.10 ± 3.91 mm [95% CI 2.68 to 7.52 mm]; p = 0.011). More newly formed bone was observed in the CO2 group than the control group at Week 4 (68.31 ± 16.32 mm [95% CI 58.19 to 78.44 mm] versus 96.26 ± 19.37 mm [95% CI 84.25 to 108.26 mm]; p < 0.001). There were no differences in any other parameters (cartilage area at Weeks 0 and 4; newly formed bone area at Weeks 0 and 2). Immunohistochemical isolectin B4 staining showed greater capillary densities in rabbits in the CO2 group than the control group in the distraction area at Week 0 and surrounding tissue at Weeks 0 and 2 (distraction area at Week 0, 286.54 ± 61.55 /mm [95% CI 232.58 to 340.49] versus 410.24 ± 55.29 /mm [95% CI 361.78 to 458.71]; p < 0.001; surrounding tissue at Week 0 395.09 ± 68.16/mm [95% CI 335.34 to 454.83] versus 589.75 ± 174.42/mm [95% CI 436.86 to 742.64]; p = 0.003; at Week 2 271.22 ± 169.42 /mm [95% CI 122.71 to 419.73] versus 508.46 ± 49.06/mm [95% CI 465.45 to 551.47]; p < 0.001 respectively). There was no difference in the distraction area at Week 2. The expressions of BMP -2 at Week 2, HIF1-α at Week 2 and VEGF at Week 0 and 2 were greater in the CO2 group than in the control group (BMP -2 at Week 2 3.84 ± 0.83 fold [95% CI 3.11 to 4.58] versus 7.32 ± 1.63 fold [95% CI 5.88 to 8.75]; p < 0.001; HIF1-α at Week 2, 10.49 ± 2.93 fold [95% CI 7.91 to 13.06] versus 20.74 ± 11.01 fold [95% CI 11.09 to 30.40]; p < 0.001; VEGF at Week 0 4.80 ± 1.56 fold [95% CI 3.43 to 6.18] versus 11.36 ± 4.82 fold [95% CI 7.13 to 15.59]; p < 0.001; at Week 2 31.52 ± 8.26 fold [95% CI 24.27 to 38.76] versus 51.05 ± 15.52 fold [95% CI 37.44 to 64.66]; p = 0.034, respectively). There were no differences in any other parameters (BMP-2 at Week 0 and 4; BMP -7 at Weeks 0, 2 and 4; HIF-1α at Weeks 0 and 4; IL-6 at Weeks 0, 2 and 4; VEGF at Week 4). In the biomechanical assessment, ultimate stress and failure energy were greater in the CO2 group than in the control group at Week 4 (ultimate stress 259.96 ± 74.33 N [95% CI 167.66 to 352.25] versus 422.45 ± 99.32 N [95% CI 299.13 to 545.77]; p < 0.001, failure energy 311.32 ± 99.01 Nmm [95% CI 188.37 to 434.25] versus 954.97 ± 484.39 Nmm [95% CI 353.51 to 1556.42]; p = 0.003, respectively). There was no difference in stiffness (216.77 ± 143.39 N/mm [95% CI 38.73 to 394.81] versus 223.68 ± 122.17 N/mm [95% CI 71.99 to 375.37]; p = 0.92).
Conclusion: Transcutaneous application of CO2 accelerated bone generation in a distraction osteogenesis model of rabbit tibias. As demonstrated in previous studies, CO2 treatment might affect bone regeneration in distraction osteogenesis by promoting angiogenesis, blood flow, and endochondral ossification.
Clinical Relevance: The use of the transcutaneous application of CO2 may open new possibilities for shortening healing time in patients with distraction osteogenesis. However, a deeper insight into the mechanism of CO2 in the local tissue is required before it can be used in future clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371043 | PMC |
http://dx.doi.org/10.1097/CORR.0000000000001288 | DOI Listing |
Int J Med Sci
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood.
View Article and Find Full Text PDFNeurosurg Focus
January 2025
Departments of3Plastic Surgery and.
Objective: The surgical management of craniosynostosis varies without consensus on technique or standard outcomes reporting. The authors of this study aimed to investigate current surgical management of craniosynostosis in the United States.
Methods: Two hundred seventy-five surgeons actively treating craniosynostosis in the United States were surveyed.
BMC Musculoskelet Disord
December 2024
Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
Background: The purpose of this study was to report the clinical and psychological outcomes of using a locking compression plate (LCP) as a sequential external fixator following the distraction phase in the treatment of tibial bone defects caused by fracture-related infection (FRI).
Methods: We retrospectively analyzed the clinical records and consecutive X-ray images of patients with tibial bone defects who were treated with an LCP as a sequential external fixator following the distraction phase, between June 2017 and December 2022. The ASAMI criteria were applied to assess the bone and functional outcomes, and postoperative complications were evaluated by using the Paley classification.
J Craniofac Surg
December 2024
Alder Hey Children's Hospital, Eaton Road, Liverpool, UK.
Introduction: Posterior vault distraction osteogenesis (PVDO) allows significant increase in intracranial volume but is associated with complications including cerebrospinal fluid (CSF) leaks, infection and device failure. The authors outline their outcomes over 12 years and the impact of PVDO on pre-existing Chiari malformation type 1 (CM).
Method: Retrospective review of all PVDOs in our unit over a period of 12 years from 2011 to 2023.
Front Surg
December 2024
Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
Background: Bone transport techniques are crucial for managing large bone defects, but the optimal approach for different defect lengths remains unclear. This study aimed to compare bone regeneration rates between short bifocal bone transport (SBBT), long bifocal bone transport (LBBT), and trifocal bone transport (TBT) using pixel value ratio (PVR) as an objective quantitative measure.
Methods: This retrospective study included 60 patients undergoing lower limb bone transport, divided into SBBT ( = 22, defects <6 cm), LBBT ( = 20, defects ≥6 cm), and TBT ( = 18, defects ≥6 cm) groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!