The aim of this study was to explore the inhibitory potential of apoferritin or apoferritin-capped metal nanoparticles (silver, gold and platinum) against arginine kinase. The arginine kinase activity was determined in the presence and absence of apoferritin or apoferritin-capped metal nanoparticles. In addition, kinetic parameters and relative inhibition of enzyme activity were estimated. Apoferritin or apoferritin-capped metal nanoparticles' interaction with arginine kinase of led to a >70% reduction in the enzyme activity. Further analysis to determine kinetic parameters suggests a mixed inhibition by apoferritin or apoferritin-nanoparticles, with a decrease in V. Furthermore, the K of the enzyme increased for both ATP and L-arginine substrates. Meantime, the inhibition constant (K) values for the apoferritin and apoferritin-nanoparticle interaction were in the submicromolar concentration ranging between 0.062 to 0.168 nM and 0.001 to 0.057 nM, respectively, for both substrates (i.e., L-arginine and ATP). Further kinetic analyses are warranted to aid the development of these nanoparticles as selective therapeutics. Also, more studies are required to elucidate the binding properties of these nanoparticles to arginine kinase of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435722 | PMC |
http://dx.doi.org/10.3390/molecules25153432 | DOI Listing |
BMC Biol
January 2025
Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Division of Cardiovascular Science, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK.
Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.
View Article and Find Full Text PDFGenes Cells
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. TCI strategies to target more common amino acid side-chains have yet to be demonstrated. Targeting other amino acids would also expand the pharmaceutical industry's toolbox for targeting other tough-to-drug proteins.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Neuroscience and Therapeutics, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
Weight loss, a key indicator of malnutrition in amyotrophic lateral sclerosis (ALS) patients, negatively impacts patient prognosis. However, effective nutritional interventions have not been adequately established. Research in ALS model mice has shown that L-arginine can prolong survival; however, no human intervention studies have been conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!