The smart grid provides advanced functionalities, including real-time monitoring, dynamic energy management, advanced pricing mechanisms, and self-healing, by enabling the two-way flow of power and data, as well as the use of Internet of Things (IoT) technologies and devices. However, converting the traditional power grids to smart grids poses severe security challenges and makes their components and services prone to cyber attacks. To this end, advanced techniques are required to mitigate the impact of the potential attacks. In this paper, we investigate the use of honeypots, which are considered to mimic the common services of the smart grid and are able to detect unauthorized accesses, collect evidence, and help hide the real devices. More specifically, the interaction of an attacker and a defender is considered, who both optimize the number of attacks and the defending system configuration, i.e., the number of real devices and honeypots, respectively, with the aim to maximize their individual payoffs. To solve this problem, game theoretic tools are used, considering an one-shot game and a repeated game with uncertainty about the payoff of the attacker, where the Nash Equilibrium (NE) and the Bayesian NE are derived, respectively. Finally, simulation results are provided, which illustrate the effectiveness of the proposed framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435919PMC
http://dx.doi.org/10.3390/s20154199DOI Listing

Publication Analysis

Top Keywords

smart grid
12
game theoretic
8
real devices
8
game
4
theoretic honeypot
4
honeypot deployment
4
smart
4
deployment smart
4
grid smart
4
grid advanced
4

Similar Publications

Galloping behavior of insulated overhead transmission line based on aerodynamic analysis.

Sci Rep

January 2025

Key Laboratory of Smart Grid of Ministry of Education, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.

The galloping of iced transmission line under extreme weather conditions, will lead to significant electrical faults and structural damage, and is becoming a serious issue that threatens the safe and stable operation of the power grid. In this paper, a simulation model of 10 kV insulated overhead transmission line is established based on finite element method, and the effects of various influencing factors on the galloping behavior and aerodynamic characteristics are investigated and analyzed. The results show that the aerodynamic stability of the iced lines is poorest, when the wind speed is between 7 and 15 m/s and the wind attack angle is around 50°.

View Article and Find Full Text PDF

Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte.

ACS Nano

January 2025

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.

Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid.

View Article and Find Full Text PDF

This dataset is generated from real-time simulations conducted in MATLAB/Simscape, focusing on the impact of smart noise signals on battery energy storage systems (BESS). Using Deep Reinforcement Learning (DRL) agent known as Proximal Policy Optimization (PPO), noise signals in the form of subtle millivolt and milliampere variations are strategically created to represent realistic cases of False Data Injection Attacks (FDIA). These signals are designed to disrupt the State of Charge (SoC) and State of Health (SoH) estimation blocks within Unscented Kalman Filters (UKF).

View Article and Find Full Text PDF

This paper presents an open-source dataset intended to enhance the analysis and optimization of photovoltaic (PV) power generation in urban environments, serving as a valuable resource for various applications in solar energy research and development. The dataset comprises measured PV power generation data and corresponding on-site weather data gathered from 60 grid-connected rooftop PV stations in Hong Kong over a three-year period (2021-2023). The PV power generation data was collected at 5-minute intervals at the inverter-level.

View Article and Find Full Text PDF

Predecting power transformer health index and life expectation based on digital twins and multitask LSTM-GRU model.

Sci Rep

January 2025

Department of Embedded Network Systems and Technology, Faculty of Artificial Intelligence, Kafrelsheikh University, El-Geish St, Kafrelsheikh, 33516, Egypt.

Power transformers play a crucial role in enabling the integration of renewable energy sources and improving the overall efficiency and reliability of smart grid systems. They facilitate the conversion, transmission, and distribution of power from various sources and help to balance the load between different parts of the grid. The Transformer Health Index (THI) is one of the most important indicators of ensuring their reliability and preventing unplanned outages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!