The biosynthesis of calcium carbonate (CaCO) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO precipitation of when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO), sodium acetate, and urea have a significant effect on both target responses ( < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L biomass and 1.143 g/L of CaCO precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435838PMC
http://dx.doi.org/10.3390/molecules25153416DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
12
enhancement biomass
8
sodium acetate
8
biomass calcium
4
carbonate biomineralization
4
biomineralization plackett-burman
4
plackett-burman screening
4
screening box-behnken
4
box-behnken optimization
4
optimization approach
4

Similar Publications

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Objectives:  Calcium carbonate (CaCO), a major inorganic component in bones and teeth, offers potential protection against demineralization. This study investigates the effect of CaCO from shells on the expression of fibroblast growth factor 2 (FGF2), transforming growth factor-β1 (TGF-β1), and collagen type 1 in the rat dental pulp.

Materials And Methods:  The first maxillary molars of were perforated and subsequently pulp capped with CaCO extracted from shells.

View Article and Find Full Text PDF

It is essential to understand the modification mechanism of hydrophobicity nano-CaCO to their potential application in different fields of chemistry. However, the water absorption of hydrophobicity nano-CaCO is seldom studied. In this study, Raman, BET and TGA experiments were performed on nano-CaCO samples to obtain surfactants contents and microstructure characteristics.

View Article and Find Full Text PDF

Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!