The misuse of ratios in ecological stoichiometry.

Ecology

Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Sciences and Technology, Überlandstrasse 133, Dübendorf, ZH, 8600, Switzerland.

Published: November 2020

Ecological stoichiometry is concerned with the ratios of different elements, particularly carbon, nitrogen, and phosphorus. Ratios by their nature do not respond symmetrically to changes in the numerator and denominator and do not follow normal distributions; however, researchers frequently fail to consider these properties in their analyses, which has biased reported results. Calculating means, variance, or linear slopes based on untransformed ratios results in biased results. I demonstrate the consequences of these errors for inferences from stoichiometric analyses using simple examples and several large monitoring data sets. I then review 100 studies in ecological stoichiometry and find that misuse of ratio data is common, with 93% of studies containing at least one error. These errors may be problematic, particularly in large-scale meta-analyses summarizing data over large ranges. Fortunately, most of these mistakes can be easily avoided by first log transforming elemental ratios. I therefore recommend that, to ensure robust and reproducible results, researchers in ecological stoichiometry should adopt a convention of presenting stoichiometric ratio data as the logarithm of molar ratios in the future. The widespread use of untransformed nitrogen to phosphorus ratio as an indicator of nutrient limitation has likely exaggerated the importance of phosphorus limitation, particularly in freshwater systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3153DOI Listing

Publication Analysis

Top Keywords

ecological stoichiometry
16
nitrogen phosphorus
8
ratio data
8
ratios
5
misuse ratios
4
ecological
4
ratios ecological
4
stoichiometry
4
stoichiometry ecological
4
stoichiometry concerned
4

Similar Publications

Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.

View Article and Find Full Text PDF

Microbial Carbon Use Efficiency and Growth Rates in Soil: Global Patterns and Drivers.

Glob Chang Biol

January 2025

Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.

Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.

View Article and Find Full Text PDF

Soil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.

View Article and Find Full Text PDF

Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally.

Plant Divers

November 2024

Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g.

View Article and Find Full Text PDF

Challenges in alpine meadow recovery: The minor effect of grass restoration on microbial resource limitation.

J Environ Manage

February 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China. Electronic address:

Microorganisms play a vital role in restoring soil multifunctionality and rejuvenating degraded meadows. The availability of microbial resources, such as carbon, nitrogen, and phosphorus, often hinders this process. However, there is limited information on whether grass restoration can alleviate microbial resource limitations in damaged slopes of high-altitude regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!