Rapid Processing and Drug Evaluation in Glioblastoma Patient-Derived Organoid Models with 4D Bioprinted Arrays.

iScience

Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Departments of Medicine and Pathology and Laboratory Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA. Electronic address:

Published: August 2020

AI Article Synopsis

  • Glioblastoma is the most common and lethal brain cancer, and despite progress in precision medicine, treatment options are still limited due to a lack of effective molecular testing.
  • The study presents a new four-dimensional (4D) cell-culture array made with a special polymer that can transform shape to facilitate drug response testing in glioblastoma models.
  • This innovative platform allows for quick evaluation of drug sensitivity and effectiveness, potentially guiding therapy choices based on genomic and drug testing, improving patient outcomes in glioblastoma treatment.

Article Abstract

Glioblastoma is the most common and deadly primary brain malignancy. Despite advances in precision medicine oncology (PMO) allowing the identification of molecular vulnerabilities in glioblastoma, treatment options remain limited, and molecular assays guided by genomic and expression profiling to inform patient enrollment in life-saving trials are lacking. Here, we generate four-dimensional (4D) cell-culture arrays for rapid assessment of drug responses in glioblastoma patient-derived models. The arrays are 3D printed with thermo-responsive shape memory polymer (SMP). Upon heating, the SMP arrays self-transform in time from 3D cell-culture inserts into histological cassettes. We assess the utility of these arrays with glioblastoma cells, gliospheres, and patient derived organoid-like (PDO) models and demonstrate their use with glioblastoma PDOs for assessing drug sensitivity, on-target activity, and synergy in drug combinations. When including genomic and drug testing assays, this platform is poised to offer rapid functional drug assessments for future selection of therapies in PMO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393526PMC
http://dx.doi.org/10.1016/j.isci.2020.101365DOI Listing

Publication Analysis

Top Keywords

glioblastoma patient-derived
8
arrays glioblastoma
8
drug
6
glioblastoma
6
arrays
5
rapid processing
4
processing drug
4
drug evaluation
4
evaluation glioblastoma
4
patient-derived organoid
4

Similar Publications

Bioengineered NanoAid synergistically targets inflammatory pro-tumor processes to advance glioblastoma chemotherapy.

Nanoscale

January 2025

Department of Anaesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211101, China.

Through transcriptomic analysis of patient-derived glioblastoma tissues, we identify an overactivation of inflammatory pathways that contribute to the development of a tumor-promoting microenvironment and therapeutic resistance. To address this critical mechanism, we present NanoAid, a biomimetic nanoplatform designed to target inflammatory pro-tumor processes to advance glioblastoma chemotherapy. NanoAid employs macrophage-membrane-liposome hybrids to optimize the delivery of COX-2 inhibitor parecoxib and paclitaxel.

View Article and Find Full Text PDF

Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs).

View Article and Find Full Text PDF

Discovery of PRMT5 N-Terminal TIM Barrel Ligands from Machine-Learning-Based Virtual Screening.

ACS Omega

January 2025

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.

Protein arginine methyltransferase 5 (PRMT5), which symmetrically dimethylates cytosolic and nuclear proteins, has been demonstrated as an important cancer therapeutic target. In recent years, many advanced achievements in PRMT5 inhibitor development have been made. Most PRMT5 inhibitors in the clinical trial focus on targeting the C-terminal catalytic domain, whereas developing small molecules to interrupt the PRMT5/pICLn (methylosome subunit) protein-protein interface is also of great importance for inhibiting PRMT5.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

A subtype specific probe for targeted magnetic resonance imaging of M2 tumor-associated macrophages in brain tumors.

Acta Biomater

January 2025

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Electronic address:

Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!