A short, efficient one-step synthesis of 2-methyl-5-(3-methyl-2-butenyl)-1,4-benzoquinone, a natural product from Pyrola media is described. The synthesis is based on a direct late C-H functionalization of the quinone scaffold. The formation of the natural product was confirmed by means of 2D-NMR spectroscopy. Additional derivatives were synthesized and tested alongside the natural product as potential substrate and substrate-based inhibitors of mitochondrial complex I (MCI). The structure-activity relationship study led to the discovery of 3-methylbuteneoxide-1,4-anthraquinone (1 i), an inhibitor with an IC of 5 μM against MCI. The identified molecule showed high selectivity for MCI when tested against other quinone-converting enzymes, including succinate dehydrogenase, and the Na (+)-translocating NADH:quinone oxidoreductase. Moreover, the identified inhibitor was also active in cell-based proliferation assays. Therefore, 1 i can be considered as a novel chemical probe for MCI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202000307DOI Listing

Publication Analysis

Top Keywords

natural product
12
mitochondrial complex
8
substrate-based inhibitors
8
concise synthesis
4
synthesis 14-benzoquinone-based
4
natural
4
14-benzoquinone-based natural
4
natural products
4
products mitochondrial
4
complex substrates
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Genesis and regulation of C-terminal cyclic imides from protein damage.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.

View Article and Find Full Text PDF

Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!