Recent developments propose renewed use of surface-modified nanoparticles (NPs) for enhanced oil recovery (EOR) due to improved stability and reduced porous media retention. The enhanced surface properties render the nanoparticles more suitable compared to bare nanoparticles, for increasing the displacement efficiency of waterflooding. However, the EOR mechanisms using NPs are still not well established. This work investigates the effect of in-situ surface-modified silica nanoparticles (SiO2 NPs) on interfacial tension (IFT) and wettability behavior as a prevailing oil recovery mechanism. For this purpose, the nanoparticles have been synthesized via a one-step sol-gel method using surface-modification agents, including Triton X-100 (non-ionic surfactant) and polyethylene glycol (polymer), and characterized using various techniques. These results exhibit the well-defined spherical particles, particularly in the presence of Triton X-100 (TX-100), with particle diameter between 13 to 27 nm. To this end, SiO2 nanofluids were formed by dispersing nanoparticles (0.05 wt.%, 0.075 wt.%, 0.1 wt.%, and 0.2 wt.%) in 3 wt.% NaCl to study the impact of surface functionalization on the stability of the nanoparticle suspension. The optimal stability conditions were obtained at 0.1 wt.% SiO2 NPs at a basic pH of 10 and 9.5 for TX-100/ SiO2 and PEG/SiO nanofluids, respectively. Finally, the surface-treated SiO2 nanoparticles were found to change the wettability of treated (oil-wet) surface into water-wet by altering the contact angle from 130° to 78° (in case of TX-100/SiO2) measured against glass surface representing carbonate reservoir rock. IFT results also reveal that the surfactant treatment greatly reduced the oil-water IFT by 30%, compared to other applied NPs. These experimental results suggest that the use of surface-modified SiO2 nanoparticles could facilitate the displacement efficiency by reducing IFT and altering the wettability of carbonate reservoir towards water-wet, which is attributed to more homogeneity and better dispersion of surface-treated silica NPs compared to bare-silica NPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392340PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236837PLOS

Publication Analysis

Top Keywords

oil recovery
12
wt% wt%
12
nanoparticles
9
recovery mechanism
8
surface-modified silica
8
silica nanoparticles
8
displacement efficiency
8
sio2 nps
8
triton x-100
8
sio2 nanoparticles
8

Similar Publications

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants.

J Environ Manage

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.

The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.

View Article and Find Full Text PDF

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

Direct Hot Solid-Liquid Extraction (DH-SLE): A High-Yield Greener Technique for Lipid Recovery from Coffee Beans.

Plants (Basel)

January 2025

Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil.

Soxhlet extraction is a method recommended by the Association of Official Analytical Chemists (AOAC) to determine the lipid content in plant samples. Generally, n-hexane (toxicity grade 5) is used as the solvent (≈300 mL; ≈30 g sample) at boiling temperatures (69 °C) for long times (≤16 h) under a chilled water reflux (≈90 L/h), proportionally aggravated by the number of repetitions and samples determined. In this sense, the technique is neither safe nor sustainable for the analyst or the environment.

View Article and Find Full Text PDF

The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!