In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a -acetylglucosamine moiety (-GlcNAc) via an -linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the -GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by -GlcNAc transferase (OGT) and -GlcNAcase (OGA), respectively. Since its discovery, -GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in -GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating -GlcNAc turnover, the role of -GlcNAcylation in regulating cellular physiology, and how dysregulation in -GlcNAc cycling contributes to pathophysiological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428922 | PMC |
http://dx.doi.org/10.1152/physrev.00043.2019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!