Dysfunctional adipose tissue plays a central role in the pathogenesis of the obesity-related metabolic disease, including type 2 diabetes. Targeting adipose tissue using biopolymer implants is a novel therapeutic approach for metabolic disease. We transplanted porous poly(lactide-co-glycolide) (PLG) implants coated with human interleukin-4 (hIL-4)-expressing lentivirus into epididymal white adipose tissue (eWAT) of mice fed a high-fat diet. Tissue and systemic inflammation and metabolism were studied with flow cytometry, immunohistochemistry, quantitative real-time polymerase chain reaction, adipose tissue histology, and in vivo glucose tolerance testing at 2 and 10 weeks of a high-fat diet. PLG implants carrying hIL-4-expressing lentivirus implanted into epididymal white adipose tissue of mice-regulated adipose tissue inflammation, including increased CD3 CD4 T-cell frequency, increased eWAT adipocyte hypertrophy, and decreased FASN and ATGL expression, along with reduced fasting blood glucose levels. These effects were observed in early obesity but were not maintained in established obesity. Local delivery of bioimplants loaded with cytokine-expressing lentivirus vectors to adipose tissue influences tissue inflammation and systemic metabolism in early obesity. Further study will be required to show more durable metabolic effects. These data demonstrate that polymer biomaterials implanted into adipose tissue have the potential to modulate local tissue and systemic inflammation and metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358590PMC
http://dx.doi.org/10.1002/bit.27523DOI Listing

Publication Analysis

Top Keywords

adipose tissue
36
tissue
12
tissue inflammation
12
inflammation systemic
8
systemic metabolism
8
human interleukin-4
8
adipose
8
metabolic disease
8
plg implants
8
hil-4-expressing lentivirus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!