AI Article Synopsis

  • Early diagnosis of cognitive impairment in Parkinson's disease (PD) is tough; researchers focused on frontal lobe metabolism using advanced imaging techniques to identify potential biomarkers.
  • The study involved comparing patients with PD who are cognitively normal and those with cognitive impairment to healthy controls, revealing significant differences in certain metabolites that correlate with cognitive function.
  • Findings suggest that changes in frontal metabolism, specifically in N-acetyl aspartate, choline, and creatine concentrations, may indicate cognitive decline in PD and could help in developing effective diagnostic approaches.

Article Abstract

Background And Purpose: Diagnosis of Parkinson's disease (PD) cognitive impairment at early stages is challenging compared to the stage of PD dementia where functional impairment is apparent and easily diagnosed. Hence, to evaluate potential early stage cognitive biomarkers, we assessed frontal lobe metabolic alterations using in vivo multi-voxel proton magnetic resonance spectroscopic imaging (H-MRSI).

Method: Frontal metabolism was studied in patients with PD with normal cognition (PD-CN) (n = 26), with cognitive impairment (PD-CI) (n = 27), and healthy controls (HC) (n = 30) using a single slice (two-dimensional) H-MRSI at 3 T. The acquired spectra were post-processed distinctly for voxels corresponding to the bilateral middle/superior frontal gray matter (GM) and frontal white matter (WM) regions (delineated employing neuromorphometrics atlas) using the LC-Model software.

Result: Significant (post hoc p < 0.016) reduction in the concentration of N-acetyl aspartate (NAA) in the middle and superior frontal GMs and total choline (tCho) and total creatine (tCr) in the frontal WM was observed in PD-CI compared to PD-CN and HC, while that in HC and PD-CN groups were comparable. The NAA and tCr/tCho metabolite concentrations showed significant (p < 0.05) positive correlations with cognitive test scores in the frontal GM and WM, respectively. The receiver operating curve (ROC) analysis revealed significant (p < 0.05) "area under curve" for NAA/tNAA in the frontal GM and tCho in the frontal WM.

Conclusion: The frontal metabolic profile is altered in cognitively impaired PD compared with cognitively normal PD. Neuronal function loss (NAA), altered energy metabolism (Cr), and cholinergic (Cho) neural transmission are implicated in PD cognitive pathology. Frontal neuro-metabolism may promisingly serve as PD cognitive biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10072-020-04626-9DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
12
frontal lobe
8
lobe metabolic
8
metabolic alterations
8
parkinson's disease
8
disease cognitive
8
frontal
5
alterations characterizing
4
characterizing parkinson's
4
cognitive
4

Similar Publications

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Background: Cognitive impairment is a common health problem among older adults. Previous studies have proven the association between sleep quality and cognitive impairment, but the specific underlying mechanisms need to be further explored. This study aimed to examine the relationship between sleep quality and cognitive impairment and the mediating effect of frailty in this relationship among the rural older adults.

View Article and Find Full Text PDF

Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.

View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

The present study aimed to investigate the causal relationships among cognitive impairment, psychopathology, and real-life functioning in a large sample of people with schizophrenia, using a data-driven causal discovery procedure based on partial ancestral graphs (PAGs). This method may provide additional insights for the identification of potential therapeutic targets to promote recovery in people with chronic schizophrenia. State-of-the-art instruments were used to assess the study variables.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!