In order to design high-energetic and insensitive explosives, the frontier orbital energy gaps, surface electrostatic potentials, nitro group charges, bond dissociation energies (BDEs) of the C-NO trigger bonds, and intermolecular interactions obtained by the M06-2X/6-311++G(2d,p) method were quantitatively correlated with the experimental drop hammer potential energies of 10 typical C-nitro explosives. The changes of several information-theoretic quantities (ITQs) in the density functional reactivity theory were discussed upon the formation of complexes. The BDEs in the explosives with six-membered ring are larger than those with five-membered ring. The frontier orbital energy gaps of the compounds with benzene ring are larger than those with N-heterocycle. The models involving the intermolecular interaction energies and the energy gaps could be used to predict the impact sensitivity of the C-nitro explosives, while those involving ΔS, ΔI, and ΔS are invalid. With the more and more ITQs, the further studies are needed to seek for a good correlation between impact sensitivity measurements and ITQs for the energetic C-nitro compounds. The origin of sensitivity was revealed by the reduced density gradient method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-020-04481-7 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
Topological phases have prevailed across diverse disciplines, spanning electronics, photonics, and acoustics. Hitherto, the understanding of these phases has centred on energy (frequency) bandstructures, showcasing topological boundary states at spatial interfaces. Recent strides have uncovered a unique category of bandstructures characterised by gaps in momentum, referred to as momentum bandgaps or k gaps, notably driven by breakthroughs in photonic time crystals.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environment, Tsinghua University, Beijing 100084, China.
Overexploiting ecosystems to meet growing food demands threatens global agricultural sustainability and food security. Addressing these challenges requires solutions tailored to regional agro-ecological boundaries (AEBs) and overall agro-ecological risks. Here, we propose a globally consistent and regionally adapted approach for quantifying regional AEBs.
View Article and Find Full Text PDFSmall
January 2025
School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China.
Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA.
This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai, 201203, P.R. China.
Under extreme conditions, condensed matters are subject to undergo a phase transition and there have been many attempts to find another form of hydroxide stabilized over HO. Here, using Density Functional Theory (DFT)-based crystal structure prediction including zero-point energy, it is that proton superoxide (HO), the lightest superoxide, can be stabilized energetically at high pressure and temperature conditions. HO is metallic at high pressure, which originates from the 𝜋 orbitals overlap between adjacent superoxide anions (O ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!