Aims: Many biomechanical studies have shown that the weakest biomechanical point of a rotator cuff repair is the suture-tendon interface at the medial row. We developed a novel double rip-stop (DRS) technique to enhance the strength at the medial row for rotator cuff repair. The objective of this study was to evaluate the biomechanical properties of the DRS technique with the conventional suture-bridge (SB) technique and to evaluate the biomechanical performance of the DRS technique with medial row knots.

Methods: A total of 24 fresh-frozen porcine shoulders were used. The infraspinatus tendons were sharply dissected and randomly repaired by one of three techniques: SB repair (SB group), DRS repair (DRS group), and DRS with medial row knots repair (DRSK group). Specimens were tested to failure. In addition, 3 mm gap formation was measured and ultimate failure load, stiffness, and failure modes were recorded.

Results: The mean load to create a 3 mm gap formation in the DRSK and DRS groups was significantly higher than in the SB group. The DRSK group had the highest load to failure with a mean ultimate failure load of 395.0 N (SD 56.8) compared to the SB and DRS groups, which recorded 147.1 N (SD 34.3) and 285.9 N (SD 89.8), respectively (p < 0.001 for both). The DRS group showed a significantly higher mean failure load than the SB group (p = 0.006). Both the DRS and DRSK groups showed significantly higher mean stiffness than the SB group.

Conclusion: The biomechanical properties of the DRS technique were significantly improved compared to the SB technique. The DRS technique with medial row knots showed superior biomechanical performance than the DRS technique alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376283PMC
http://dx.doi.org/10.1302/2046-3758.96.BJR-2019-0196.R1DOI Listing

Publication Analysis

Top Keywords

medial row
24
drs technique
24
drs
13
technique medial
12
row knots
12
rotator cuff
12
cuff repair
12
failure load
12
technique
9
novel double
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!