The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391640PMC
http://dx.doi.org/10.1038/s41598-020-69286-3DOI Listing

Publication Analysis

Top Keywords

aerosol surface
4
surface contamination
4
contamination sars-cov-2
4
sars-cov-2 observed
4
observed quarantine
4
quarantine isolation
4
isolation care
4
care novel
4
novel severe
4
severe acute
4

Similar Publications

Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019-2020.

Environ Sci Technol

January 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.

View Article and Find Full Text PDF

Design and Evaluation of 3D-Printed Lattice Structures as High Flow Rate Aerosol Filters.

ACS Appl Eng Mater

December 2024

Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Article Synopsis
  • Aerosol contamination is a significant issue across various sectors, and the study focuses on using 3D-printed open foam-like lattice structures as an efficient solution for filtration.
  • The researchers created and tested four different lattice geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) to determine their effectiveness in capturing aerosol particles, finding that filtration performance improves with the specific surface area of the filter design.
  • The study also identified mechanisms of particle deposition and established that 3D-printed lattices can achieve high filtration efficiencies (10-100%) under varying airflow conditions, indicating their potential as customizable and effective aerosol filters while addressing existing production challenges.
View Article and Find Full Text PDF

The Effects of Electronic Cigarettes on Oral Microbiome and Metabolome in 3D Tissue-Engineered Models.

Int Dent J

December 2024

Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates; Department of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield, UK. Electronic address:

Background And Aim: Recent studies have shown that electronic cigarettes (ECs) use disrupts the oral microbiome composition and diversity, impairing the metabolic pathways of the mucosal cells. However, to date, no reports have evaluated the role of EC exposure in the context of oral metabolome. Hence, the aim of this study was to investigate the role of EC aerosol exposure in the dysregulation of the oral microbiome and metabolome profile using in vitro 3D organotypic models of human oral mucosa.

View Article and Find Full Text PDF

Isoprene serves an important part in plant defense against biotic and abiotic stresses, while also exerting a crucial influence on atmospheric photochemical processes and global climate change. The regional climate-chemistry-ecosystem model (RegCM-Chem-YIBs) was employed in the following study to estimate the biogenic isoprene emissions (BISP) in China during 2018-2020. The model explored the relative contributions of various stress factors such as drought, carbon dioxide (CO), and surface ozone (O) to isoprene emissions.

View Article and Find Full Text PDF

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!