Transistor biosensors are mass-fabrication-compatible devices of interest for point of care diagnosis as well as molecular interaction studies. While the actual transistor gates in processors reach the sub-10 nm range for optimum integration and power consumption, studies on design rules for the signal-to-noise ratio (S/N) optimization in transistor-based biosensors have been so far restricted to 1 µm device gate area, a range where the discrete nature of the defects can be neglected. In this study, which combines experiments and theoretical analysis at both numerical and analytical levels, we extend such investigation to the nanometer range and highlight the effect of doping type as well as the noise suppression opportunities offered at this scale. In particular, we show that, when a single trap is active near the conductive channel, the noise can be suppressed even beyond the thermal limit by monitoring the trap occupancy probability in an approach analog to the stochastic resonance effect used in biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391715PMC
http://dx.doi.org/10.1038/s41598-020-69493-yDOI Listing

Publication Analysis

Top Keywords

noise suppression
8
thermal limit
8
suppression thermal
4
limit nanotransistor
4
nanotransistor biosensors
4
biosensors transistor
4
transistor biosensors
4
biosensors mass-fabrication-compatible
4
mass-fabrication-compatible devices
4
devices interest
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Super-resolution imaging of cell metabolism is hindered by the incompatibility of small metabolites with fluorescent dyes and the limited resolution of imaging mass spectrometry. We present ultrasensitive reweighted visible stimulated Raman scattering (URV-SRS), a label-free vibrational imaging technique for multiplexed nanoscopy of intracellular metabolites. We developed a visible SRS microscope with extensive pulse chirping to improve the detection limit to ~4,000 molecules and introduced a self-supervised multi-agent denoiser to suppress non-independent noise in SRS by over 7.

View Article and Find Full Text PDF

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.

View Article and Find Full Text PDF

Dynamic transverse mode instability (TMI) has become one of the primary limitations for power scaling of high-power fiber lasers. Experimental evidence has shown that static mode degradation can suppress the dynamic TMI effect. This study reveals the physical mechanisms behind the mitigation of dynamic TMI in two-mode fiber lasers through static mode degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!