Background: Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype.

Results: Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea.

Conclusions: This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392671PMC
http://dx.doi.org/10.1186/s12864-020-06930-2DOI Listing

Publication Analysis

Top Keywords

dehydration stress
16
genotype
10
progressive dehydration
8
drought tolerance
8
stress
7
dehydration
6
proteomic responses
4
responses progressive
4
stress leaves
4
chickpea
4

Similar Publications

Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.

View Article and Find Full Text PDF

Effect of Hydration on Viscoelastic Tensile Properties of Sclera.

Vision (Basel)

January 2025

Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, IL 60607, USA.

The present work characterized the effects of hydration on the viscoelastic tensile properties of the sclera. Scleral strips were dissected from the posterior region near the optic nerve head of porcine eyes in the superior-inferior direction. The samples were divided into four hydration groups and their mechanical response was characterized by conducting uniaxial tensile stress-relaxation experiments.

View Article and Find Full Text PDF

Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.

Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.

View Article and Find Full Text PDF

Thermo-sensitive polycaprolactone coacervates for preventing protein aggregation under thermal stress.

J Mater Chem B

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Inspired from heat shock proteins (HSPs), a thermo-sensitive coacervate-forming polycaprolactone (CPCL) was designed as a natural chaperone mimic to protect proteins from thermal stress. Unlike the coil-globule polymers of poly(-isopropyl acrylamide) (PNIPAM), the as-designed CPCL underwent a partial dehydration during heating, characterizing it as a coacervate-forming polymer. With its ability to transform between the coil and coacervate states in response to temperature, theCPCL spontaneously captured and released targeted proteins, thereby behaving like a natural chaperone of HSPs.

View Article and Find Full Text PDF

Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!