AI Article Synopsis

  • PEEK is a strong, lightweight polymer ideal for making custom replacement parts for use in space, especially on the ISS.
  • Additive manufacturing (3D printing) using PEEK faces challenges due to its high melting temperature and semi-crystalline nature, which can lead to inconsistent performance in printed parts.
  • Recent studies focus on how different printing parameters affect the quality of 3D-printed PEEK, aiming to provide a clearer understanding for future research and its potential applications in space manufacturing.

Article Abstract

Poly (ether ether ketone) (PEEK) is a high-performance engineering thermoplastic polymer with potential for use in a variety of metal replacement applications due to its high strength to weight ratio. This combination of properties makes it an ideal material for use in the production of bespoke replacement parts for out-of-earth manufacturing purposes, in particular on the International Space Station (ISS). Additive manufacturing (AM) may be employed for the production of these parts, as it has enabled new fabrication pathways for articles with complex design considerations. However, AM of PEEK via fused filament fabrication (FFF) encounters significant challenges, mostly stemming from the semi crystalline nature of PEEK and its associated high melting temperature. This makes PEEK highly susceptible to changes in processing conditions which leads to a large reported variation in the literature on the final performance of PEEK. This has limited the adaption of FFF printing of PEEK in space applications where quality assurance and reproducibility are paramount. In recent years, several research studies have examined the effect of printing parameters on the performance of the 3D-printed PEEK parts. The aim of the current review is to provide comprehensive information in relation to the process-structure-property relationships in FFF 3D-printing of PEEK to provide a clear baseline to the research community and assesses its potential for space applications, including out-of-earth manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465918PMC
http://dx.doi.org/10.3390/polym12081665DOI Listing

Publication Analysis

Top Keywords

peek
9
fused filament
8
filament fabrication
8
process-structure-property relationships
8
out-of-earth manufacturing
8
space applications
8
fabrication peek
4
peek review
4
review process-structure-property
4
relationships poly
4

Similar Publications

In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.

View Article and Find Full Text PDF

Sterilization is required for any biomedical device intended to be used in contact with the human body. Several studies have reported alterations in the bulk and surface properties of such devices after repeated sterilization cycles. These surface modifications may influence other clinical parameters.

View Article and Find Full Text PDF

In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Eyespot peek-a-boo: Leaf rolls enhance the antipredator effect of insect eyespots.

J Anim Ecol

December 2024

Field Museum of Natural History, Chicago, Illinois, USA.

Animal colour patterns are often accompanied by specific, synergistic behaviours to most effectively defend prey against visual predators. Given the inherent context-dependence of colour perception, understanding how these colour-behaviour synergies function in a species' natural environment is crucial. For example, refuge-building species create a unique visual environment where most (or all) of the body is obscured unless closely inspected.

View Article and Find Full Text PDF

All-inside techniques are based on devices that use PEEK (polyether ether ketone) or biocomposite anchors placed at extracapsular locations such as anchorage points over which the sutures are tied. However, because of complications like irritability and intra-articular migration of these hard anchors, suture-based all-inside meniscal repair systems are now gaining popularity. Although these devices have advantages over conventional all-inside devices, they are costly, thus limiting their widespread use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!