Lung cancer is the leading cause of cancer deaths worldwide, with a high morbidity and less than 20% survival rate. Therefore, new treatment strategies and drugs are needed to reduce the mortality of patients with lung cancer. α7 nicotinic acetylcholine receptor (α7 nAChR), as a receptor of nicotine and its metabolites, is a potential target for lung cancer treatment. Our previous studies revealed that sinomenine plays anti-inflammation roles via α7 nAChR and down-regulates the expression of this receptor, thus increasing the inflammatory response. Hence, sinomenine is possibly a natural ligand of this receptor. In the present study, the effects of sinomenine on lung cancer A549 cells and tumor-bearing mice were determined to investigate whether this alkaloid has an inhibitory effect on lung cancer via α7 nAChR. CCK-8 assay, wound-healing test, and flow cytometry were performed for cell proliferation, cell migration, and apoptosis analysis in vitro, respectively. Xenograft mice were used to evaluate the effects of sinomenine in vivo. Results showed that sinomenine decreased cell proliferation and migration abilities but increased the percentage of apoptotic cells. Tumor volume in tumor-bearing mice was significantly reduced after sinomenine treatment compared with that in the vehicle group mice (p < 0.05). Furthermore, the effects of sinomenine were abolished by the α7 nAChR antagonist mecamylamine and the allosteric modulator PNU-120596, but no change occurred when the mice were pretreated with the muscarinic acetylcholine receptor antagonist atropine. Meanwhile, sinomenine suppressed α7 nAChR expression in vitro and in vivo, as well as the related signaling molecules pERK1/2 and ERK1/2 and the transcription factors TTF-1 and SP-1. By contrast, sinomenine up-regulated the expression of another transcription factor, Egr-1. These effects were restricted by mecamylamine and PNU but not by atropine. Results suggested that sinomenine can inhibit lung cancer via α7 nAChR in a negative feedback mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/JLB.6MA0720-344RRR | DOI Listing |
J Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.
Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!