Mitochondrial inner membrane protein (Mitofilin or Mic60) is a mitochondria-shaping protein that plays a key role in maintaining mitochondrial cristae structure and remodeling. We recently showed that Mitofilin knockdown in H9c2 myoblasts induces mitochondrial structural damage resulting in mitochondrial dysfunction that is responsible for cell death via apoptosis. Here, we investigated the role of Mitofilin regulation in ischemia/reperfusion (I/R) injury and studied the relationship between Mitofilin and Cyclophilin (CypD), a key regulator of mitochondrial permeability transition pore (mPTP) opening. C57Bl6 male mice hearts were subjected to different ischemia times (15, 30, or 45 min) followed by a 2 h reperfusion period, or 45 min ischemia followed by 0, 15, 30, 60, or 120 min reperfusion to determine the impact of ischemia or reperfusion times on Mitofilin levels and its interaction with CypD. We found that the increase in myocardial infarct size and the reduction of mitochondrial calcium retention capacity were concomitant with Mitofilin reduction as a function of ischemic duration. We also found that 15 min reperfusion after 45 min ischemia was sufficient to cause a reduction of Mitofilin levels compared to sham, while 45 min ischemia alone was not enough to cause a significant decrease of Mitofilin. We revealed that the c-terminus coiled-coiled domain of Mitofilin is important for its interaction with CypD and the deletion of this identified sequence resulted in a loss of Mitofilin-CypD link, dissipation of mitochondrial membrane potential and increase in cell death. A decrease of the levels of Mitofilin was also associated with mitochondrial structural integrity damage, increased reactive oxygen species (ROS) production, and calpain activity. Our results indicate that Mitofilin physically binds to CypD in the inner mitochondrial membrane and the disruption of this interaction may play a critical role in the increase of mitochondrial dysfunction and initiation of myocytes' death after I/R injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484119 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.039 | DOI Listing |
Cancer Immunol Immunother
January 2025
Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
Despite identifying specific CD8 T cell subsets associated with immunotherapy resistance, the molecular pathways driving this process remain elusive. Given the potential role of CD38 in regulating CD8 T cell function, we aimed to investigate the accumulation of CD38CD8 T cells in lung cancer and explore its role in immunotherapy resistance. Phenotypic analysis of tumoral CD8 T cells from both lung cancer patients and immunotherapy-resistant preclinical models revealed that CD38-expressing CD8 T cells consist of CD38 and CD38 subsets.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China.
Chronic obstructive pulmonary disease (COPD) stands as a major contributor to mortality worldwide, with cigarette smoke being a primary causative factor. Acacetin has been reported to possess lung protective effects. However, the precise role and mechanism of Acacetin in COPD remains elusive.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Houston Methodist Research Institute, Houston, TX, USA.
Background: Findings have demonstrated that mitochondrial dysfunction is vital to Alzheimer's Disease (AD) pathogenesis and progression. This study explored an innovative treatment strategy involving transfer of polymer-functionalized, healthy mitochondria to AD neurons. We hypothesized that this organelle transplantation approach would restore mitochondrial function and bioenergetics, preventing aberrant neuronal dynamics associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale University School of Medicine, New Haven, CT, USA.
Background: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!