Discovery of Protein-Protein Interaction Inhibitors by Integrating Protein Engineering and Chemical Screening Platforms.

Cell Chem Biol

Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany. Electronic address:

Published: November 2020

Protein-protein interactions (PPIs) govern intracellular life, and identification of PPI inhibitors is challenging. Roadblocks in assay development stemming from weak binding affinities of natural PPIs impede progress in this field. We postulated that enhancing binding affinity of natural PPIs via protein engineering will aid assay development and hit discovery. This proof-of-principle study targets PPI between linear ubiquitin chains and NEMO UBAN domain, which activates NF-κB signaling. Using phage display, we generated ubiquitin variants that bind to the functional UBAN epitope with high affinity, act as competitive inhibitors, and structurally maintain the existing PPI interface. When utilized in assay development, variants enable generation of robust cell-based assays for chemical screening. Top compounds identified using this approach directly bind to UBAN and dampen NF-κB signaling. This study illustrates advantages of integrating protein engineering and chemical screening in hit identification, a development that we anticipate will have wide application in drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2020.07.010DOI Listing

Publication Analysis

Top Keywords

protein engineering
12
chemical screening
12
assay development
12
integrating protein
8
engineering chemical
8
natural ppis
8
nf-κb signaling
8
discovery protein-protein
4
protein-protein interaction
4
interaction inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!