Hidden Markov models are useful in simultaneously analyzing a longitudinal observation process and its dynamic transition. Existing hidden Markov models focus on mean regression for the longitudinal response. However, the tails of the response distribution are as important as the center in many substantive studies. We propose a quantile hidden Markov model to provide a systematic method to examine the entire conditional distribution of the response given the hidden state and potential covariates. Instead of considering homogeneous hidden Markov models, which assume that the probabilities of between-state transitions are independent of subject- and time-specific characteristics, we allow the transition probabilities to depend on exogenous covariates, thereby yielding nonhomogeneous Markov chains and making the proposed model more flexible than its homogeneous counterpart. We develop a Bayesian approach coupled with efficient Markov chain Monte Carlo methods for statistical inference. Simulations are conducted to assess the empirical performance of the proposed method. The proposed methodology is applied to a cocaine use study to provide new insights into the prevention of cocaine use.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0962280220942802DOI Listing

Publication Analysis

Top Keywords

hidden markov
20
markov models
16
markov
7
hidden
6
bayesian quantile
4
quantile nonhomogeneous
4
nonhomogeneous hidden
4
models
4
models hidden
4
models simultaneously
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!