Panaxatriol saponins (PTS) have a long history in the treatment of stroke. In our previous experiments, PTS has been found to alleviate ischemic stroke and play a role through regulating the inflammatory response, but the specific mechanism of its regulation is still unclear. Cell viability was determined by MTT assay. Expressions of polarization-related proteins CD16, CD68, ARG1 and CD206; inflammatory factors interleukin-1β (IL-1β); inducible nitric oxide synthase (iNOS); monocyte chemotactic protein 1(MCP-1) and cyclooxygenase-2 (COX-2); apoptosis-related proteins pro-caspase3; bax; caspase3 and bcl-2; and STAT3 and p-STAT3 were detected by western blot. ELISA was used to detect the expression of inflammatory-related factors in cells. The apoptosis rate was detected by flow cytometry. We found that the survival rate of oxygen sugar deprivation/reoxygenation (OGD/R) cells increased obviously after PTS treatment in a dose-dependent manner. PTS can promote M2 polarization of microglial cells (BV2) and inhibit inflammatory response of OGD/R cells, accompanied by decreased expression of inflammatory factors IL-1β, iNOS, MCP-1, and COX-2. PTS inhibited apoptosis of OGD/R cells and was accompanied by decreased expression of apoptotic proteins Bax and caspase3 and increased expression of Bcl-2. We also found that PTS activated STAT3 levels in BV2 cells. After the addition of STAT3 inhibitor Stattic, it was found that PTS could promote M2 polarization of BV2 cells by activating the STAT3 pathway, thus inhibiting cell inflammation and apoptosis. PTS promoted M2 polarization in microglia cells by activating the STAT3 pathway, thereby reducing cell inflammation and apoptosis after glucose/oxygen deprivation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-020-01278-xDOI Listing

Publication Analysis

Top Keywords

promote polarization
12
bv2 cells
12
inflammation apoptosis
12
activating stat3
12
ogd/r cells
12
cells
9
panaxatriol saponins
8
polarization bv2
8
apoptosis glucose/oxygen
8
glucose/oxygen deprivation
8

Similar Publications

After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.

Methods: An acute MI model was created using left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

IKZF1 promotes pyroptosis and prevents M2 macrophage polarization by inhibiting JAK2/STAT5 pathway in colon cancer.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China. Electronic address:

Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database.

View Article and Find Full Text PDF

Spleen tyrosine kinase aggravates intestinal inflammation through regulating inflammatory responses of macrophage in ulcerative colitis.

Int Immunopharmacol

January 2025

Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China. Electronic address:

Background: Ulcerative colitis (UC) is a persistent chronic, non-specific inflammatory disease, and macrophages play a crucial role in its pathogenesis. Spleen tyrosine kinase (Syk) is strongly associated with the pathogenesis of several inflammatory diseases. However, the role of Syk in the pathogenesis of UC is still obscure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!