Somatic embryogenesis as an alternative for in vitro multiplication of Butia odorata from mature zygotic embryos.

An Acad Bras Cienc

Departamento de Horticultura e Silvicultura, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Published: September 2020

Butia odorata is a palm native to southern Brazil and Uruguay, not domesticated, much appreciated for its fruits and economic potential. However, the extractivism and the difficulty of propagation have led to the decline of natural populations. The objective of this work was to prove the possibility of induction of somatic embryogenesis in B. odorata. Mature zygotic embryos were induced in two media, MS and Y3, combined with auxin 2,4-D and picloram in five concentrations (2,4-D: 0, 361.99, 452.49, 542.99 and 633.48 μM/L, picloram: 0, 50, 150, 300 and 450 μM/L). The results promising during induction with the formation of embryogenic calli and somatic embryos, however the regeneration of them was not efficient, this may be due to the occurrence of somatic embryos fused during its development. The roots were formed, but the aerial part remained molten, not completing its development. Auxin picloram and Y3 medium provided the most adequate conditions for calogenesis, formation of embryogenic callus and somatic embryos, with concentrations of 150, 300 and 450 μM/L. This is the first description of somatic embryogenesis in B. odorata that will serve as the basis for future research and adjustments of the methodology proposed here.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202020181215DOI Listing

Publication Analysis

Top Keywords

somatic embryogenesis
12
somatic embryos
12
butia odorata
8
odorata mature
8
mature zygotic
8
zygotic embryos
8
embryogenesis odorata
8
150 300
8
300 450
8
450 μm/l
8

Similar Publications

Morphokinetic Analyses of Fishing Cat-Domestic Cat Interspecies Somatic Cell Nuclear Transfer Embryos Through A Time-Lapse System.

Animals (Basel)

January 2025

Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.

A time-lapse live embryo monitoring system provides a powerful approach to recording dynamic developmental events of cultured embryos in detail. By obtaining continuous short-interval images, blastocyst formation can be predicted and embryos can be selected. The objective of this study was to investigate the morphokinetic parameters of fishing cat-domestic cat interspecies somatic cell nuclear transfer (iSCNT) embryos from one-cell to blastocyst stages, and in particular, the cleavage patterns of the first division in iSCNT and IVF embryos, as these play a central role in euploidy.

View Article and Find Full Text PDF

Background/objectives: (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death.

View Article and Find Full Text PDF

Insights from the single-cell level: lineage trajectory and somatic-germline interactions during spermatogenesis in dwarf surfclam Mulinia lateralis.

BMC Genomics

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, Laboratory for Marine Biology and Biotechnology (Qingdao Marine Science and Technology Center), Ocean University of China, Qingdao, China.

Background: Spermatogenesis is a complex process of cellular differentiation that commences with the division of spermatogonia stem cells, ultimately resulting in the production of functional spermatozoa. However, a substantial gap remains in our understanding of the molecular mechanisms and key driver genes that underpin this process, particularly in invertebrates. The dwarf surfclam (Mulinia lateralis) is considered an optimal bivalve model due to its relatively short generation time and ease of breeding in laboratory settings.

View Article and Find Full Text PDF

Background: Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail.

View Article and Find Full Text PDF

The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!