AI Article Synopsis

  • A new, efficient method has been developed for oxidizing terminal olefins using a Pd(ii) catalyst and MnO2, leading to β-hydroxy-methyl ketones.
  • This method operates under mild conditions, ensuring good compatibility with various functional groups while maintaining high selectivity.
  • Unlike previous methods that produced α,β-unsaturated ketones, this approach avoids common side reactions, demonstrating versatility in producing methyl ketones and even successfully synthesizing gingerol.

Article Abstract

Efficient and mild reaction conditions for Wacker-type oxidation of terminal olefins of less explored homoallyl alcohols to β-hydroxy-methyl ketones have been developed by using a Pd(ii) catalyst and MnO2 as a co-oxidant. The method involves mild reaction conditions and shows good functional group compatibility along with high regio- and chemoselectivity. While our earlier system of PdCl2/CrO3/HCl produced α,β-unsaturated ketones from homoallyl alcohols, the present method provided orthogonally the β-hydroxy-methyl ketones. No overoxidation or elimination of benzylic and/or β-hydroxy groups was observed. The method could be extended to the oxidation of simple terminal olefins as well, to methyl ketones, displaying its versatility. An application to the regioselective synthesis of gingerol is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob01344gDOI Listing

Publication Analysis

Top Keywords

homoallyl alcohols
12
terminal olefins
12
mild reaction
8
reaction conditions
8
β-hydroxy-methyl ketones
8
mno terminal
4
terminal oxidant
4
oxidant wacker
4
wacker oxidation
4
oxidation homoallyl
4

Similar Publications

Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable.

View Article and Find Full Text PDF

Highly Stereo- and Enantioselective Syntheses of δ-Alkyl-Substituted ()-Homoallylic Alcohols.

Org Lett

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Highly stereo- and enantioselective synthesis of δ-alkyl-substituted ()-homoallylic alcohols via asymmetric allylation is developed. In the presence of a chiral phosphoric acid catalyst, allylation of aldehydes with α-substituted allylboronates provides δ-alkyl-substituted homoallylic alcohols with excellent ()-selectivities and enantioselectivities.

View Article and Find Full Text PDF

Herein we present photoinduced cobaloxime-catalyzed selective remote desaturation of aliphatic alcohols. This transformation, which proceeds efficiently at room temperature, facilitates the synthesis of valuable cyclic and acyclic allylic and homoallylic alcohols from readily available saturated aliphatic alcohols. Remarkably, this method obviates the need for external oxidants, noble metal catalysts, and phosphine ligands.

View Article and Find Full Text PDF

Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized ()-alkenes, such as (homo)allyl ethers, alcohols, and amides (/ = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst.

View Article and Find Full Text PDF

Photochemical carboborylation and three-component difunctionalization of α,β-unsaturated ketones with boronic acids tosylhydrazones.

Chem Sci

November 2024

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain

The reactions of cyclic α,β-unsaturated -tosylhydrazones and alkylboronic acids promoted by 370-390 nm light in the presence of a base give rise to allylic boronic acids that can be trapped as the corresponding pinacolboronates by treatment with pinacol. This reaction features wide scope regarding both coupling partners and functional group tolerance, allowing for the incorporation of a variety of natural product-derived fragments. The allylic boronic acids can be also reacted in a one-pot process with aldehydes, to produce homoallylic alcohols with very high diastereoselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!