Bitter melon ( L.) is a fruit that brings health benefits to consumers because the fruit is rich in bioactive compounds. In this work, a combination of low-temperature convective drying and microwave radiation was used to dehydrate sliced bitter melon. One-factor-at-a-time design was performed to evaluate the influence of microwave power density (1.5, 3.0, 4.5 W/g), drying temperatures (20, 25, and 30°C), and air velocity (1.0, 1.2 and 1.4 m/s) on the change of moisture content, nutrient levels (vitamin C and total phenolics), and the antioxidant activities (DPPH and FRAP assays) of the bitter melon. The obtained results showed that all investigated factors affected the rate of moisture removal. Microwave power density output and air-drying temperature strongly participated in the retention of nutrients. In this study, the drying process was driven by both heat and mass transfer processes, so the increase of air velocity prolonged the drying time causing more loss of nutrient levels and antioxidant activities. It was found that DPPH free radical scavenging ability directly correlated with total phenolic content, but the ferric-reducing antioxidant power was related to the presence of reductants including phenolic compounds, vitamin C, and other phytochemicals in bitter melons. This work determined that microwave power density and the air-drying temperature are the main two factors that should be used for further investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382151PMC
http://dx.doi.org/10.1002/fsn3.1676DOI Listing

Publication Analysis

Top Keywords

bitter melon
16
microwave power
12
power density
12
bioactive compounds
8
air velocity
8
nutrient levels
8
antioxidant activities
8
activities dpph
8
air-drying temperature
8
drying
5

Similar Publications

Enhancement of health beneficial bioactivities of bitter melon (Momordica charantia L.) by puffing.

Food Chem

January 2025

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

Effects of puffing and extraction method on physical and biological efficacy of bitter melon was investigated. Puffing increased the Maillard reaction products, extraction yield, total phenolic and total flavonoid contents. Antioxidant activity was the highest at 980 kPa, but there was no significant difference between two extraction methods.

View Article and Find Full Text PDF

The objective of this study was the develop of fortified cookies enriched with oats flour and bitter gourd powder and monitoring the effects of these enrichments on the physicochemical, antioxidant, antimicrobial, and sensory attributes. This study was subjected to four treatments: control (0% oats flour and bitter gourd powder), T1 (10% oats flour), T2 (3% bitter gourd powder), and T3 (7% oats flour and 3% bitter gourd powder). Various physical properties of the cookies, including weight, thickness, diameter, spread ratio, baking loss, pH, and color values (L*, a*, and b*), were measured.

View Article and Find Full Text PDF

Background: Lipoxygenases (LOXs) are key enzymes in the unsaturated fatty acid oxidation reaction pathway and play an important regulatory role in the synthesis of fruit aroma volatiles.

Methods: gene family members were identified in the whole genome database of bitter gourd and analyzed bioinformatically. An RT-qPCR was used to analyze the expression differences in different tissues.

View Article and Find Full Text PDF

Background Chronic periodontitis is primarily caused by various bacterial species present in the plaque biofilm, which trigger a host inflammatory response. This leads to the abnormal release of inflammatory mediators such as proinflammatory cytokines (interleukin-1, interleukin-6, interleukin-8, and tumor necrosis factor-α), which are free radicals that cause alveolar bone resorption and tooth loss. ​​​ (bitter gourd) is a widely used medicinal plant for the treatment of numerous diseases such as skin infections, diabetes, metabolic disorders, and carcinomas for several decades.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 4% microalgae (MC) and fermented microalgae (FMC) affect gut bacteria and obesity in male mice, with implications for animal metabolic health.
  • Mice were divided into four diets over 12 weeks, and gut microbiome analysis showed significant changes in microbial communities for those on MC and FMC diets.
  • Results indicated that both MC and FMC could help manage metabolism-related disorders and obesity by altering gut microbiota and enhancing metabolic pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!