Maltobionic acid (MA), formed by a gluconic acid and glucose linked by an α-1,4 bond, may have the properties of a nondigestible oligosaccharide. The objective of this study was to elucidate the bioavailability of MA in rats and humans by observing digestion of MA by small intestinal enzymes, the fermentation of MA by gut microbiota, and the effect of adaptation following prolonged ingestion of MA. MA digestion was assessed using brush border membrane vesicles (BBMV) from rat small intestine. A within-subject repeated measures design was used for ingestion experiments in 10 healthy female participants. After MA ingestion, postprandial plasma glucose and insulin levels, breath hydrogen excretion, and urinary MA were measured. The effect of adaptation following prolonged MA ingestion was investigated in rats. MA was minimally hydrolyzed by BBMV. Ingestion of 10 g of MA by healthy females did not elevate postprandial plasma glucose and insulin levels. Breath hydrogen and urinary MA were negligibly excreted over 8 hr following ingestion. Adaptation to prolonged MA ingestion produced no significant difference in exhaled hydrogen levels over 8 hr following administration compared with controls. MA is a new food material that is highly resistant to digestion and fermentation. It expresses the characteristics of a nondigestible oligosaccharide, including being low energy, improving the flavor of food and juice, and mineral solubilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382184PMC
http://dx.doi.org/10.1002/fsn3.1643DOI Listing

Publication Analysis

Top Keywords

nondigestible oligosaccharide
12
adaptation prolonged
12
prolonged ingestion
12
maltobionic acid
8
rats humans
8
postprandial plasma
8
plasma glucose
8
glucose insulin
8
insulin levels
8
levels breath
8

Similar Publications

Effect of glycoside hydrolase-mediated wheat arabinoxylan hydrolysate on gut microbiota and metabolite profiles.

Carbohydr Polym

March 2025

Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Sichuan, Chendu, 610046. Electronic address:

Cereal arabinoxylans (AX) are complex non-digestible polysaccharides and their molecular structural features significantly influence their degradation and metabolic behaviors within the body. This study focuses on investigating the impact of wheat AX hydrolysates produced by different glycoside hydrolases on the gut microbiota during colonic fermentation. Endo-1,4-β-xylanase (XYN) and arabinofuranosidase (ARF) were used to hydrolyze the xylan backbone and remove the arabinose side chains, respectively.

View Article and Find Full Text PDF

Arabinoxylo-oligosaccharides (AXOS) are non-digestible dietary fibers that potentially confer a health benefit by stimulating beneficial bacteria in the gut. Still, a detailed overview of the diversity of gut bacteria and their specificity to utilize structurally different AXOS has not been provided to date and was aimed for in this study. Moreover, we assessed the genetic information of summarized bacteria, and we extracted genes expected to encode for enzymes that are involved in AXOS hydrolysis (based on the CAZy database).

View Article and Find Full Text PDF

Oligosaccharides are conventionally recognized as "passersby" in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs.

View Article and Find Full Text PDF
Article Synopsis
  • Bifidobacteria produce complex exopolysaccharides (EPS) that have potential health benefits, but it's unclear how growth conditions, especially carbon sources, influence their structure.
  • Researchers studied the effects of two non-digestible carbohydrates, 2'-fucosyllactose (2'-FL) and galactooligosaccharides (GOS), on the growth of two Bifidobacteria species, B. adolescentis and B. infantis.
  • Results showed that B. adolescentis produced larger EPS molecules when exposed to GOS, while B. infantis thrived with 2'-FL and also created an additional polysaccharide with GOS, indicating the varied effects of different growth conditions on EPS production.
View Article and Find Full Text PDF

Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!