Nutrients are known to limit productivity of plant communities around the world. In the Brazilian Cerrado, indirect evidences point to phosphorus as the main limiting nutrient, but some fertilization experiments suggest that one or more micronutrients might play this role. Boron is one of the essential micronutrients for plants. Agronomically, it received some attention, but it has mostly been neglected in ecological studies assessing the effects of nutrients on plant growth. Through field fertilization and mesocosm experiments in a degraded area in the Cerrado, we show that boron addition increased biomass production of herbaceous vegetation. This could be related to a lower aluminum uptake in the boron fertilized plants. Even considering that plant growth was promoted by boron addition due to aluminum toxicity alleviation, this is the first study reporting boron limitation in natural, noncultivated plant communities and also the first report of this kind in vegetative grasses. These results contribute to disentangling patterns of nutrient limitation among plant species of the species-rich, aluminum-rich, and nutrient-poor Cerrado biome and highlight the potential role of micronutrients, such as boron, for growth of noncrop plants. Understanding how nutrient limitation differs among functional groups in the highly biodiverse areas founded on ancient tropical soils may help managing these plant communities in a changing world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381560PMC
http://dx.doi.org/10.1002/ece3.6367DOI Listing

Publication Analysis

Top Keywords

plant communities
12
brazilian cerrado
8
plant growth
8
boron addition
8
nutrient limitation
8
boron
7
plant
6
boron application
4
application increases
4
growth
4

Similar Publications

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Rural-urban transformation shapes oasis agriculture in Morocco's High Atlas Mountains.

Sci Rep

January 2025

Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, 37213, Witzenhausen, Germany.

Traditional agricultural activities and rural livelihoods in Morocco's High Atlas Mountains are rapidly changing. This is triggered by increasing rural-urban interactions and new livelihood opportunities in cities. A typical example is the oasis of Tizi N'Oucheg in the country's High Atlas Mountains, which over centuries was largely self-sufficient in food grain and livestock production.

View Article and Find Full Text PDF

Impact of pollution on microbiological dynamics in the pistil stigmas of Orobanche lutea flowers (Orobanchaceae).

Sci Rep

January 2025

Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.

Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.

View Article and Find Full Text PDF

Prokaryotic and eukaryotic periphyton responses to warming, nutrient enrichment and small omnivorous fish: a shallow lake mesocosms experiment.

Environ Res

January 2025

Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!