The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as . Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early-diverging taxa is required to test this further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381594PMC
http://dx.doi.org/10.1002/ece3.6361DOI Listing

Publication Analysis

Top Keywords

evolution ceratopsian
12
growth series
8
ceratopsian frill
8
morphospace occupation
8
frill
7
evolution
6
ceratopsian
6
modularity heterochrony
4
heterochrony evolution
4
ceratopsian dinosaur
4

Similar Publications

, the earliest known ceratopsian, is represented by dozens of specimens of different sizes collected from the Upper Jurassic of the Junggar Basin, northwestern China. Here, we present the first comprehensive study on the bone histology of based on ten specimens varying in size. Four ontogenetic stages are recognized: early juvenile, late juvenile, subadult, and adult.

View Article and Find Full Text PDF

Although the brain fills nearly the entire cranial cavity in birds, it can occupy a small portion of it in crocodilians. The lack of data regarding the volumetric correspondence between the brain and the cranial cavity hampers thorough assessments of the degree of encephalization in non-neornithean dinosaurs and other extinct archosaurs and, consequently, informed inferences regarding their cognitive capacities. Existing data suggest that, across extant archosaurs, the degree of endocranial doming and the volume of intracranial nonneural components are inversely related.

View Article and Find Full Text PDF

In the Late Cretaceous, northern and southern hemispheres evolved distinct dinosaurian faunas. Titanosaurians and abelisaurids dominated the Gondwanan continents; hadrosaurids, ceratopsians and tyrannosaurs dominated North America and Asia. Recently, a lambeosaurine hadrosaurid, Ajnabia odysseus, was reported from the late Maastrichtian phosphates of the Oulad Abdoun Basin Morocco, suggesting dispersal between Laurasia and Gondwana.

View Article and Find Full Text PDF

Tyrannosaurid dinosaurs dominated as predators in the Late Cretaceous of Laurasia, culminating in the evolution of the giant Tyrannosaurus rex, both the last and largest tyrannosaurid. Where and when Tyrannosaurini (T. rex and kin) originated remains unclear.

View Article and Find Full Text PDF

Divergent strategies in cranial biomechanics and feeding ecology of the ankylosaurian dinosaurs.

Sci Rep

October 2023

Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.

Ankylosaurs were important megaherbivores of Jurassic and Cretaceous ecosystems. Their distinctive craniodental anatomy and mechanics differentiated them from coexisting hadrosaurs and ceratopsians, and morphological evidence suggests dietary niche partitioning between sympatric ankylosaurids and nodosaurids. Here, we investigate the skull biomechanics of ankylosaurs relative to feeding function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!