Chemo-gene therapy is an emerging synergetic modality for the treatment of cancers. Herein, we developed pH-responsive multifunctional DNA nanomicelles (DNMs) as delivery vehicles for controllable release of doxorubicin (Dox) and anaplastic lymphoma kinase (ALK)-specific siRNA for the chemo-gene synergetic therapy of anaplastic large cell lymphoma (ALCL). DNMs were synthesized by performing in situ rolling circle amplification (RCA) on the amphiphilic primer-polylactide (PLA) micelles, followed by functionalization of pH-responsive triplex DNA via complementary base pairing. The anticancer drug Dox and ALK-specific siRNA were co-loaded to construct Dox/siRNA/DNMs for chemo-gene synergetic cancer therapy. When exposed to the acidic microenvironment (pH below 5.0), C-G·C triplex structures were formed, leading to the release of Dox and siRNA for gene silencing to enhance the chemosensitivity in ALCL K299 cells. The chemo-gene synergetic anticancer effect of Dox/siRNA/DNMs on ALCL was evaluated and . The pH-responsive DNMs exhibited good monodispersity at different pH values, good biocompatibility, high drug loading capacity, and excellent stability even in the human serum. With the simultaneous release of anticancer drug Dox and ALK-specific siRNA in response to pH in the tumor microenvironment, the Dox/siRNA/DNMs demonstrated significantly higher treatment efficacy for ALCL compared with chemotherapy alone, because the silencing of ALK gene expression mediated by siRNA increased the chemosensitivity of ALCL cells. From the pathological analysis of tumor tissue, the Dox/siRNA/DNMs exhibited the superiority in inhibiting tumor growth, low toxic side effects and good biosafety. DNMs co-loaded with Dox and ALK-specific siRNA exhibited significantly enhanced apoptosis of ALCL K299 cells and effectively inhibited tumor growth without obvious toxicity, providing a potential strategy in the development of nanomedicines for synergetic cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381733 | PMC |
http://dx.doi.org/10.7150/thno.45803 | DOI Listing |
J Exp Clin Cancer Res
August 2024
School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
Background: Camptothecin (CPT) is one of the frequently used small chemotherapy drugs for treating hepatocellular carcinoma (HCC), but its clinical application is limited due to severe toxicities and acquired resistance. Combined chemo-gene therapy has been reported to be an effective strategy for counteracting drug resistance while sensitizing cancer cells to cytotoxic agents. Thus, we hypothesized that combining CPT with miR-145 could synergistically suppress tumor proliferation and enhance anti-tumor activity.
View Article and Find Full Text PDFSmall
July 2024
State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
Diagnosis and treatment of tumor especially drug-resistant tumor remains a huge challenge, which requires intelligent nanomedicines with low toxic side effects and high efficacy. Herein, deformable smart DNA nanomachines are developed for synergistic intracellular cancer-related miRNAs imaging and chemo-gene therapy of drug-resistant tumors. The tetrahedral DNA framework (MA-TDNA) with fluorescence quenched component and five antennas is self-assembled first, and then DOX molecules are loaded on the MA-TDNAs followed by linking MUC1-aptamer and Mcl-1 siRNA to the antennas of MA-TDNA, so that the apt-MA-TDNA@DOX-siRNA (DNA nanomachines) is constructed.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2023
Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China. Electronic address:
Hepatic fibrosis, as a destructive liver disease, occurs due to activated hepatic stellate cells (HSCs) producing excessive extracellular matrix deposition. If left untreated, it could further deteriorate into cirrhosis and hepatoma with high morbidity and mortality. Currently, to break the dilemma of poor targeting efficiency on HSCs and limited effect of monotherapy, it is urgent to explore a precise and efficient treatment against liver fibrosis.
View Article and Find Full Text PDFInt J Nanomedicine
April 2023
School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China.
Ovarian cancer is one of the most common malignant tumors in gynecology with a high incidence. Combination therapy, eg, administration of paclitaxel followed by a platinum anticancer drug is recommended to treat ovarian cancer due to its advantages in, eg, reducing side effects and reversing (multi)drug-resistance compared to single treatment. However, the benefits of combination therapy are often compromised.
View Article and Find Full Text PDFBiosens Bioelectron
October 2022
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China. Electronic address:
Despite the great promise of cancer theranostic platforms, accurate diagnosis and effective treatment are still highly challenging. In this work, nanodevice for intracellular miRNAs detection and artificially controlled drug releasement was developed based on upconverting nanoparticles (UCNPs). For analysis aspect, DNAzymes amplified miRNA-21 detection was carried out, giving excellent sensitivity with detection limits of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!