Extravasated platelet aggregation (EPA) serves an important role in the cancer microenvironment during cancer progression, and has been demonstrated to interact with tumor cells in several types of cancer. EPA induces epithelial-mesenchymal transition (EMT) via transforming growth factor-β, and also recruits immunosuppressive cells, including regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). However, the role of EPA in gastric cancer with peritoneal metastasis remains unknown. The present study analyzed the association between EPA and prognosis in patients with gastric cancer with peritoneal metastasis. The present study evaluated 62 patients diagnosed with advanced gastric cancer with peritoneal metastasis between 2001 and 2016. EPA, EMT, Treg cells and MDSCs in peritoneal metastatic lesions were detected by immunohistochemical evaluation of CD42b, SNAIL, FOXP3 and CD33, respectively. CD42b expression was observed in 56.5% (35/62) of peritoneal metastatic lesions. CD42b expression in peritoneal metastatic lesions was associated with poor overall survival compared with lower frequencies (hazard ratio, 2.03; 95% confidence interval, 1.12-3.69; P=0.018). SNAIL, FOXP3 and CD33 expression were not associated with overall survival, but CD33 expression was markedly higher in CD42b-positive patients (P=0.022). These results indicated that EPA affects immunosuppression by recruiting MDSCs in the tumor microenvironment via the secretion of soluble factors, resulting in tumor progression. EPA may be a novel therapeutic target for gastric cancer with peritoneal metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377031PMC
http://dx.doi.org/10.3892/ol.2020.11722DOI Listing

Publication Analysis

Top Keywords

gastric cancer
20
cancer peritoneal
20
peritoneal metastasis
20
peritoneal metastatic
12
metastatic lesions
12
extravasated platelet
8
platelet aggregation
8
tumor progression
8
myeloid-derived suppressor
8
suppressor cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!