Developmental exposure to Bisphenol A (BPA), an endocrine disrupting chemical, alters many behaviors and neural parameters in rodents and non-human-primates. The effects of BPA are mediated via gonadal hormone, primarily, estrogen receptors, and are not limited to the perinatal period since recent studies show impairments further into development. The studies described in this chapter address the effects of BPA administration during early adolescence on memory and dendritic spine density in intact male and female rats as well as ovariectomized (OVX) rats in late adolescence and show that some of these adolescent induced changes endure into adulthood. In general, BPA impairs spatial memory and induces decreases in dendritic spine density in the hippocampus and the medial prefrontal cortex, two areas important for memory. The effects of adolescent BPA in intact females are compared to OVX females in an attempt to address the importance of estrogens in the mechanism(s) underlying the profound neuronal alterations occurring during adolescent development. In addition, potential mechanisms by which acute and chronic BPA induce structural alterations are discussed. These studies suggest a complex interaction between low doses of BPA, gonadal state and neural development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.vh.2020.04.004 | DOI Listing |
Small
January 2025
College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.
Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.
View Article and Find Full Text PDFToxicol Mech Methods
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.
Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.
View Article and Find Full Text PDFToxicology
January 2025
Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China. Electronic address:
Bisphenol A (BPA) is a typical environmental endocrine disruptor which have been broadly confirmed to be associated with malignant tumors, including colorectal cancer (CRC). Lipid metabolism reprogramming performed important biological effects in cancer progression. While the role of lipid metabolism in CRC progression upon BPA exposure remain elusive.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China.
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!