Chitosan is a natural polymer that has quite recently been approved as an aid for microbial control, metal chelation, clarification, and reduction of contaminants in enology. In foods other than wine, chitosan has also been evidenced to have some other activities such as antioxidant and antiradical properties. Nevertheless, the actual extent of its activities in must and wines has not been fully established. This review aimed to gather and discuss the available scientific information on the efficacy of chitosan as a multifaceted aid in winemaking, including antimicrobial, chelating, clarifying and antioxidant activities, while summarizing the chemical mechanisms underlying its action. Attention has been specifically paid to those data obtained by using unmodified chitosan in wine or in conditions pertinent to its production, intentionally excluding functionalized polymers, not admitted in enology. Unconventional utilizations together with future perspectives and research needs targeting, for example, the use of chitosan from distinct sources, production strategies to increase its efficacy or the potential sensory impact of this polysaccharide, have also been outlined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2020.1798871 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked -acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutics, School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha, India. Electronic address:
To overcome the barriers often met by traditional ophthalmic formulations, polymeric films can be utilized as an alternative to enhance drug retention duration while managing medication release. In the current investigation, polymeric films made of poly (vinyl) alcohol (PVA) and chitosan (CS) loaded with Moxifloxacin Hydrochloride (M-HCl) and plasticized with Glutaraldehyde were formulated as potential ophthalmic delivery for the treatment of conjunctivitis. The thickness, surface pH, opacity, folding endurance, and % hemolysis were measured, followed by the transparency, microscopy, electrical conductivity, mechanical strength, swelling index, and invitro drug release studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!